中国主要水域抗生素污染现状及其生态环境效应研究进展

章强, 辛琦, 朱静敏, 程金平. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001
引用本文: 章强, 辛琦, 朱静敏, 程金平. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001
ZHANG Qiang, XIN Qi, ZHU Jingmin, CHENG Jinping. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001
Citation: ZHANG Qiang, XIN Qi, ZHU Jingmin, CHENG Jinping. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001

中国主要水域抗生素污染现状及其生态环境效应研究进展

  • 基金项目:

    国家自然科学基金(41101489),广东省自然科学基金(s2012010010847),教育部新世纪优秀人才计划项目(NECT-12-0181)资助.

The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts

  • Fund Project:
  • 摘要: 抗生素滥用所造成的水环境污染问题日益受到人们的重视.本文通过查阅国内外资料,调研了中国特别是上海市的水环境中抗生素的种类及其污染水平,并概述了抗生素对于水生生物及人类的生态毒性效应.结果显示,黄浦江中污染最严重的是磺胺类和四环素类抗生素,长江口含量较高的为磺胺类和氯霉素类,而从整个中国地表水的污染情况来看,最多的是氟喹诺酮类和磺胺类抗生素.养殖业废水和城市污水是抗生素的最高污染源头,抗生素进入水体后,不仅会诱导产生抗性基因,还会与其他污染物结合对水生生物和人类产生复杂的复合毒性效应.最后,对抗生素的污染研究方向和生态健康效应进行了展望.
  • 加载中
  • [1] 符明淳, 席会平, 刘彦钊. 乳、肉制品中抗生素残留现状及监控对策[J]. 中国动物检疫, 2008, 25(6): 20-22
    [2] Kümmerer K. Antibiotics in the aquatic environment-A review-Part I[J]. Chemosphere, 2009, 75(4): 417-434
    [3] Richardson B J, Lam P K S, Martin M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin, 2005,50(9):913-920
    [4] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. The Science of the Total Environment, 1999, 225(1/2):109-118
    [5] Baquero F, Martínez J L, Cantón R. Antibiotics and antibiotic resistance in water environments[J]. Current opinion in biotechnology, 2008, 19(3): 260-265
    [6] Crane M, Watts C, Boucard T. Chronic aquatic environmental risks from exposure to human pharmaceuticals[J]. Science of the Total Environment, 2006, 367(1): 23-41
    [7] Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29
    [8] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828
    [9] 沈群辉, 冀秀玲, 傅淑珺,等. 黄浦江水域抗生素及抗性基因污染初步研究[J].生态环境学报, 2012, 21(10): 1717-1723
    [10] Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environmental science & technology, 2007, 41(1): 50-57
    [11] 冀秀玲, 刘芳, 沈群辉,等. 养殖场废水中磺胺类和四环素抗生素及其抗性基因的定量检测[J].生态环境学报, 2011, 20(5): 927-933
    [12] 姜蕾,陈书怡, 杨蓉,等. 长江三角洲地区典型废水中抗生素的初步分析[J].环境化学, 2008, 27(3): 371-374
    [13] 洪蕾洁, 石璐, 张亚雷,等. 固相萃取-高效液相色谱法同时测定水体中的10种磺胺类抗生素[J].环境科学, 2012, 33(2): 652-657
    [14] 陆克祥, 隋铭皓, 高乃云. 固相萃取-超高压液相色谱-串联质谱测定水中19种抗生素[J].分析测试学报, 2010, 29(12): 1209-1214
    [15] Halling-Sørensen B, Nors Nielsen S, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-A review[J]. Chemosphere, 1998, 36(2): 357-393
    [16] 国彬, 姚丽贤, 刘忠珍, 等. 广州市兽用抗生素的环境残留研究[J]. 农业环境科学学报, 2011, 30(5): 20-23
    [17] 王敏, 俞慎, 洪有为, 等. 5 种典型滨海养殖水体中多种类抗生素的残留特性[J]. 生态环境学报, 2011, 20(5): 934-939
    [18] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2): 304-310
    [19] 魏瑞成, 葛峰, 陈明, 等. 江苏省畜禽养殖场水环境中四环类抗生素污染研究[J]. 农业环境科学学报, 2010, 29(6): 1205-1210
    [20] 阮悦斐, 陈继淼, 郭昌胜, 等. 天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报, 2011, 30(12): 2586-2593
    [21] 刘虹, 张国平, 刘丛强, 等. 贵阳城市污水及南明河中氯霉素和四环素类抗生素的特征[J]. 环境科学, 2009, 30(3): 687-692
    [22] Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(19): 4526-4534
    [23] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China[J]. Environment international, 2012, 42: 1-9
    [24] Zhang H M, Liu P X, Feng Y J, et al. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China[J]. Marine Pollution Bulletin, 2013, 73(1): 282-290
    [25] Gao L H, Shi Y L, Li W H, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China[J]. Chemosphere, 2012, 86(6): 665-671
    [26] 国彬, 姚丽贤, 冯志诚, 等. 广州市污水厂氯霉素类抗生素污染特征研究[J]. 杭州化工, 2011, 41(2): 15-17
    [27] Zhang R J, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge[J]. Ecotoxicology and environmental safety, 2012, 80: 208-215
    [28] Zhang R J, Tang J H, Li J, et al. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks[J]. Environmental Pollution, 2013, 174: 71-77
    [29] Zhang D D, Lin L F, Luo Z X, et al. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China[J]. Journal of Environmental Monitoring, 2011, 13(7): 1953-1960
    [30] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research, 2009, 81(3): 248-254
    [31] Zou S C, Xu W H, Zhang R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities[J]. Environmental Pollution, 2011, 159(10): 2913-2920
    [32] 叶计朋, 邹世春, 张干, 等. 典型抗生素类药物在珠江三角洲水体中的污染特征[J]. 生态环境, 2007, 16(2): 384-388
    [33] 杨常青, 王龙星, 侯晓虹, 等. 大辽河水系河水中 16 种抗生素的污染水平分析[J]. 色谱, 2012, 8(8): 756-762
    [34] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental science & technology, 2011, 45(5): 1827-1833
    [35] Zheng Q, Zhang R J, Wang Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33
    [36] Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health, Part B, 2011, 46(3): 272-280
    [37] 徐维海, 张干, 邹世春, 等.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化[J].环境科学, 2006, 27(12):2458-246
    [38] Zheng S L, Qiu X Y, Chen B, et al. Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance[J]. Chemosphere, 2011, 84(11): 1677-1685
    [39] Zhang X, Zhang D D, Zhang H, et al. Occurrence, distribution, and seasonal variation of estrogenic compounds and antibiotic residues in Jiulongjiang River, South China[J]. Environmental Science and Pollution Research, 2012, 19(5): 1392-1404
    [40] Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence[J]. Environmental pollution, 2012, 163: 287-303
    [41] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3435-3440
    [42] 李金花, 莫秋蕾, 袁涛, 等. 水环境中四环素污染物的吸附行为[C]. 第五届全国环境化学大会摘要集, 大连, 2009
    [43] 董璐玺, 谢秀杰, 周启星, 等. 新型环境污染物抗生素的分子生态毒理研究进展[J]. 生态学杂志, 2010, 29(10): 2042-2048
    [44] 阮存鑫. 四环素与铜复合污染对土壤硝化作用及植物生长的影响[D]. 南京:南京林业大学硕士论文, 2010
    [45] 李通, 金彩霞, 朱雯斐, 等. 环丙沙星与 Cu 复合污染对玉米萝卜和小白菜 3 种作物生态毒性研究[J]. 农业环境科学学报, 2013, 32(1): 15-20
    [46] 赵文岩, 黄卫丽, 赵红梅. 链霉素和铜单一及复合污染对蚯蚓的急性毒性研究[C]. 中国化学会第 28 届学术年会第 2 分会场摘要集, 成都,2012
    [47] Organization for Economic Co-operation and Development (OECD). Harmonized integrated hazard classification for human health and environmental effects of chemicals[R]. As endorsed by the 28th Joint Meeting of the Chemicals Committee and the Working Party on Chemicals in November 1998. OECD, Paris
    [48] Li Z H, Randak T. Residual pharmaceutically active compounds (PhACs) in aquatic environment-status, toxicity and kinetics: A review[J]. VeterinarniMedicina, 2009, 54(7): 295-314
    [49] Isidori M, Lavorgna M, Nardelli A, et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms[J]. Science of the Total Environment, 2005, 346(1): 87-98
    [50] Minagh E, Hernan R, O'Rourke K, et al. Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species[J]. Ecotoxicology and Environmental Safety, 2009, 72(2): 434-440
    [51] Ferrari B, Paxeus N, Giudice R L, et al. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac[J]. Ecotoxicology and Environmental Safety, 2003, 55(3): 359-370
    [52] Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003, 142(3): 185-194
    [53] Kim Y, Choi K, Jung J, et al. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea[J]. Environment International, 2007, 33(3): 370-375
    [54] Halley B A, Jacob T A, Lu A Y H. The environmental impact of the use of ivermectin: Environmental effects and fate[J]. Chemosphere, 1989, 18(7): 1543-1563
    [55] Hutchinson T H, Yokota H, Hagino S, et al. Development of fish tests for endocrine disruptors[J]. Pure and applied chemistry, 2003, 75(11): 2343-2353
    [56] Nakamura Y, Yamamoto H, Sekizawa J, et al. The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): Acute toxicity in fish larvae and bioaccumulation in juvenile fish[J]. Chemosphere, 2008, 70(5): 865-873
    [57] Huggett D B, Brooks B W, Peterson B, et al. Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (β-blockers) on aquatic organisms[J]. Archives of Environmental Contamination and Toxicology, 2002, 43(2): 229-235
    [58] Jiang L, Lin Z, Hu X, et al. Toxicity prediction of antibiotics on luminescent bacteria, Photobacterium phosphoreum, based on their quantitative structure-activity relationship models[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 85(6): 550-555
    [59] Liu B Y,Nie X P,Liu W Q,et al. Toxic effects of erythromycin,ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety,2011, 74(4): 1027-1035
    [60] Halling-Sørensen B, Sengeløv G, Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271
    [61] Wollenberger L, Halling-Sørensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere, 2000, 40(7): 723-730
  • 加载中
计量
  • 文章访问数:  2833
  • HTML全文浏览数:  2833
  • PDF下载数:  2981
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-15

中国主要水域抗生素污染现状及其生态环境效应研究进展

  • 1.  华东师范大学河口海岸学国家重点实验室, 上海, 200062;
  • 2.  香港城市大学深圳研究院, 深圳, 518057
基金项目:

国家自然科学基金(41101489),广东省自然科学基金(s2012010010847),教育部新世纪优秀人才计划项目(NECT-12-0181)资助.

摘要: 抗生素滥用所造成的水环境污染问题日益受到人们的重视.本文通过查阅国内外资料,调研了中国特别是上海市的水环境中抗生素的种类及其污染水平,并概述了抗生素对于水生生物及人类的生态毒性效应.结果显示,黄浦江中污染最严重的是磺胺类和四环素类抗生素,长江口含量较高的为磺胺类和氯霉素类,而从整个中国地表水的污染情况来看,最多的是氟喹诺酮类和磺胺类抗生素.养殖业废水和城市污水是抗生素的最高污染源头,抗生素进入水体后,不仅会诱导产生抗性基因,还会与其他污染物结合对水生生物和人类产生复杂的复合毒性效应.最后,对抗生素的污染研究方向和生态健康效应进行了展望.

English Abstract

参考文献 (61)

目录

/

返回文章
返回