长江口及近海水环境中新型污染物研究进展

黄俊, 衣俊, 程金平. 长江口及近海水环境中新型污染物研究进展[J]. 环境化学, 2014, 33(9): 1484-1494. doi: 10.7524/j.issn.0254-6108.2014.09.003
引用本文: 黄俊, 衣俊, 程金平. 长江口及近海水环境中新型污染物研究进展[J]. 环境化学, 2014, 33(9): 1484-1494. doi: 10.7524/j.issn.0254-6108.2014.09.003
HUANG Jun, YI Jun, CHENG Jinping. Emerging contaminants in the Yangtze estuary and adjacent coastal area, China[J]. Environmental Chemistry, 2014, 33(9): 1484-1494. doi: 10.7524/j.issn.0254-6108.2014.09.003
Citation: HUANG Jun, YI Jun, CHENG Jinping. Emerging contaminants in the Yangtze estuary and adjacent coastal area, China[J]. Environmental Chemistry, 2014, 33(9): 1484-1494. doi: 10.7524/j.issn.0254-6108.2014.09.003

长江口及近海水环境中新型污染物研究进展

  • 基金项目:

    国家自然科学基金(41101489),广东省自然科学基金(s2012010010847),教育部新世纪优秀人才计划项目(NECT-12-0181),华东师范大学高层次人才经费(79631916),河口海岸学国家重点实验室自主课题(2012RCDW-01)资助.

Emerging contaminants in the Yangtze estuary and adjacent coastal area, China

  • Fund Project:
  • 摘要: 随着新型污染物分析检测技术进步和人们认识深入,发现许多新型污染物已经在世界范围内对生态系统造成了污染,虽然其在环境中的含量很低,但由于其稳定性、生物富集性和高毒性,给生态环境和人类健康造成巨大威胁.本文主要针对持久性有机污染物、药品及个人护理用品、内分泌干扰物、纳米材料等重要新型污染物,综述了长江口及近海水环境中新型污染物的污染现状,与国内外主要河口海湾地区新型污染物的污染水平进行了比较,并对今后主要研究方向进行了展望,以期为长江口地区开展新型污染物的环境毒理和生态风险评估研究提供参考.
  • 加载中
  • [1] 魏春花, 曾文炉, 周启星, 等. 荧光定量PCR技术在环境领域的应用[J]. 中国环境监测, 2012, 28(4): 48-53
    [2] 何松琴, 宋金明, 李学刚, 等. 长江口及邻近海域夏季表层沉积物中重金属等的分布, 来源与沉积物环境质量[J]. 海洋科学, 2011, 35(5): 4-9
    [3] 赵晓莉, 朱伟. 长三角部分城市污泥PAHs质量分数及特征分析[J]. 环境科学研究, 2010, 23(9): 1175-1179
    [4] Field J A, Johnson C A, Rose J B. What is "emerging"?[J]. Environmental Science & Technology, 2006, 40(23): 7105-7105
    [5] Petrović M, Gonzalez S, Barceló D. Analysis and removal of emerging contaminants in wastewater and drinking water[J]. TrAC Trends in Analytical Chemistry, 2003, 22(10): 685-696
    [6] Bolong N, Ismail A, Salim M R, et al. A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1): 229-246
    [7] 范学忠, 袁琳, 戴晓燕, 等. 海岸带综合管理及其研究进展[J]. 生态学报, 2010, 30(10): 2756-2765
    [8] Jobling S, Nolan M, Tyler C R, et al. Widespread sexual disruption in wild fish[J]. Environmental Science & Technology, 1998, 32(17): 2498-2506
    [9] Matthiessen P, Johnson I. Implications of research on endocrine disruption for the environmental risk assessment, regulation and monitoring of chemicals in the European Union[J]. Environmental pollution, 2007, 146(1): 9-18
    [10] 孟伟, 刘征涛, 张楠, 等. 流域水质目标管理技术研究(Ⅱ)—水环境基准, 标准与总量控制[J]. 环境科学研究, 2008, 21(1): 1-8
    [11] Ji X, Shen Q, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235: 178-185
    [12] Bettin C, Oehlmann J, Stroben E. TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level[J]. Helgoländer Meeresuntersuchungen, 1996, 50(3): 299-317
    [13] Vallack H W, Bakker D J, Brandt I, et al. Controlling persistent organic pollutants-what next?[J]. Environmental Toxicology and Pharmacology, 1998, 6(3): 143-175
    [14] Zhang L, Zhang T, Dong L, et al. Assessment of halogenated POPs and PAHs in three cities in the Yangtze River Delta using high-volume samplers[J]. Science of the Total Environment, 2013, 454: 619-626
    [15] 李秀丽, 赖子尼, 穆三妞, 等. 珠江入海口表层沉积物中多氯联苯残留与风险评价[J]. 生态环境学报, 2013, 22(1): 135-140
    [16] Su H, Wu F, Zhang R, et al. Toxicity reference values for protecting aquatic birds in china from the effects of polychlorinated biphenyls//Reviews of Environmental Contamination and Toxicology volume[M]. Springer International Publishing, 2014: 59-82
    [17] 刘静, 崔兆杰, 许宏宇. 土壤和沉积物中多氯联苯(PCBs)的环境行为研究进展[J]. 山东大学学报: 工学版, 2006, 36(5): 94-98
    [18] Mrema E J, Rubino F M, Brambilla G, et al. Persistent organochlorinated pesticides and mechanisms of their toxicity[J]. Toxicology, 2013, 307: 74-88
    [19] 程书波, 刘敏, 刘华林, 等. 长江口滨岸水体悬浮颗粒物中PCBs分布特征[J]. 环境科学, 2006, 27(1): 110-114
    [20] 杨毅, 刘敏, 许世远, 等. 长江口潮滩表层沉积物中PCBs和OCPs的分布[J]. 中国环境科学, 2003, 23(2): 215-219
    [21] 黄宏, 尹方, 吴莹, 等. 长江口表层沉积物中多氯联苯残留和风险评价[J]. 同济大学学报: 自然科学版, 2011, 39(10): 1500-1505
    [22] Zhang L, Shi S, Dong L, et al. Concentrations and possible sources of polychlorinated biphenyls in the surface water of the Yangtze River Delta, China[J]. Chemosphere, 2011, 85(3): 399-405
    [23] 申荣艳, 骆永明, 章钢娅, 等. 长江三角洲地区城市污泥中多氯联苯和有机氯农药含量与组分研究[J]. 土壤, 2006, 38(5): 539-546
    [24] 张利飞, 黄业茹, 董亮. 多溴联苯醚在中国的污染现状研究进展[J]. 环境化学, 2010, 29(5): 787-795
    [25] 颜世帅, 徐海明, 秦占芬. 多溴二苯醚毒理学研究进展及展望[J]. 生态毒理学报, 2010, 5(5): 609-617
    [26] 万斌, 郭良宏. 多溴联苯醚的环境毒理学研究进展[J]. 环境化学, 2011, 30(1): 143-152
    [27] Choi J W, Onodera J, Kitamura K, et al. Modified clean-up for PBDD, PBDF and PBDE with an active carbon column-its application to sediments[J]. Chemosphere, 2003, 53(6): 637-643
    [28] Deutsch D G, Goldfarb TD. PCDD/PCDF contamination following a plastics fire in a university lecture hall building[J]. Chemosphere, 1988, 17(12): 2423-2431
    [29] 孟范平, 于腾. 多溴联苯醚在海洋生物中的富集及毒性效应评述[J]. 热带海洋学报, 2010, 29(5): 1-9
    [30] Lindström G, Wingfors H, Dam M, et al. Identification of 19 polybrominated diphenyl ethers (PBDEs) in long-finned pilot whale (Globicephala melas) from the Atlantic[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(3): 355-363
    [31] Darnerud P O, Eriksen G S, Jóhannesson T, et al. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology[J]. Environmental Health Perspectives, 2001, 109(Suppl 1): 49
    [32] Ter Schure A F, Larsson P, Agrell C, et al. Atmospheric transport of polybrominated diphenyl ethers and polychlorinated biphenyls to the Baltic Sea[J]. Environmental Science & Technology, 2004, 38(5): 1282-1287
    [33] 袁国礼, 刘晨. 中国主要河流生活排污沉积物与河口沉积物中多溴联苯醚分布特征及转化研究[J]. 中国科技论文在线, 2011:1-8
    [34] Chen S J, Gao X J, Mai B X, et al. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: Levels, distribution and potential hydrodynamic influence[J]. Environmental pollution, 2006, 144(3): 951-957
    [35] Jin J, Liu W, Wang Y, et al. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China[J]. Chemosphere, 2008, 71(6): 1043-1050
    [36] Zhao X, Zheng B, Qin Y, et al. Grain size effect on PBDE and PCB concentrations in sediments from the intertidal zone of Bohai Bay, China[J]. Chemosphere, 2010, 81(8): 1022-1026
    [37] Minh N H, Isobe T, Ueno D, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan[J]. Environmental pollution, 2007, 148(2): 409-417
    [38] Oros D R, Hoover D, Rodigari F, et al. Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from the San Francisco Estuary[J]. Environmental Science & Technology, 2005, 39(1): 33-41
    [39] 赵文昌, 程金平, 谢海贇, 等. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术, 2006, 29(3): 105-107
    [40] Yan J, Wang L, Fu P P, et al. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 557(1): 99-108
    [41] 吴明红, 李刚, 马静, 等. 新型有机污染物氯代多环芳烃的研究进展[J]. 自然杂志, 2010, 32(4): 217-223
    [42] 唐银健, 陈玲, 李竺, 等. 黄浦江表层水体中低环多环芳烃的分布特征[J]. 环境科学与技术, 2007, 30: 1-4
    [43] 杨建丽, 刘征涛, 冯流, 等. 长江口水体中PAHs的基本生态风险特征[J]. 环境科学研究, 2009, 22(7): 784-787
    [44] 庞智勇, 冯流, 周俊丽, 等. 长江口水体中取代芳烃类污染物的生态风险评价[J]. 环境化学, 2011, 30(2): 430-434
    [45] 杜娟, 吴宏海, 袁敏, 等. 珠江水体表层沉积物中PAHs的含量与来源研究[J]. 生态环境学报, 2010, 19: 766-770
    [46] 张先勇, 王轶, 杨宝, 等. 海口湾水体中多环芳烃(PAHs)浓度及来源研究[J]. 环境科学与技术, 2012, 35: 102-105
    [47] 欧冬妮, 刘敏, 许世远, 等. 长江口近岸水体悬浮颗粒物多环芳烃分布与来源辨析[J]. 环境科学, 2008, 29: 2392-2398
    [48] 冯盘. 食品接触材料中全氟辛酸和全氟辛烷磺酰基化合物的检测和溶出迁移规律研究[D]: 杭州: 浙江大学硕士论文, 2011
    [49] Houde M, De Silva A O, Muir D C, et al. Monitoring of perfluorinated compounds in aquatic biota: An updated review: PFCs in aquatic biota[J]. Environmental Science & Technology, 2011, 45(19): 7962-7973
    [50] Kannan K, Tao L, Sinclair E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain[J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566
    [51] 郭睿, 蔡亚岐, 江桂斌, 等. 全氟辛烷磺酰基化合物(PFOS)的污染现状与研究趋势[J]. 化学进展, 2006, 18: 808-813
    [52] So M, Miyake Y, Yeung W, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11): 2085-2095
    [53] Bao J, Liu W, Liu L, et al. Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China[J]. Chemosphere, 2010, 80(2): 123-130
    [54] Bao J, Jin Y, Liu W, et al. Perfluorinated compounds in sediments from the Daliao River system of northeast China[J]. Chemosphere, 2009, 77(5): 652-657
    [55] Pan G, You C. Sediment-water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary[J]. Environmental Pollution, 2010, 158(5): 1363-1367
    [56] Naile J E, Khim J S, Hong S, et al. Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea[J]. Chemosphere, 2013, 90(2): 387-394
    [57] 郑少奎, 李晓锋. 城市污水处理厂出水中的药品和个人护理品[J]. 环境科学, 2013, 34(8): 3316-3326
    [58] Brain R A, Wilson C J, Johnson D J, et al. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms[J]. Environmental pollution, 2005, 138(3): 425-442
    [59] Ternes T A, Meisenheimer M, McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 2002, 36(17): 3855-3863
    [60] 张学政, 李帷, 李艳霞, 等. 抗生素环境行为及特征研究进展. 持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集, 2008:107-109
    [61] Martínez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365-367
    [62] Xu W, Zhang G, Li X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(19): 4526-4534
    [63] Zhang R, Tang J, Li J, et al. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China[J]. Science of the Total Environment, 2013, 450: 197-204
    [64] Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828
    [65] Zhang X X, Zhang T, Fang H H. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414
    [66] 邹世春, 朱春敬, 贺竹梅, 等. 北江河水中抗生素抗性基因污染初步研究[J]. 生态毒理学报, 2009, 4: 655-660
    [67] 董璐玺, 谢秀杰, 周启星, 等. 新型环境污染物抗生素的分子生态毒理研究进展[J]. 生态学杂志, 2010, 29: 2042-2048
    [68] 罗义, 张宏杰, 徐琳. 天津海河流域抗生素抗性基因污染. 第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集, 2011
    [69] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450
    [70] 郑少奎, 李晓锋. 城市污水处理厂出水中的药品和个人护理品[J]. 环境科学, 2013, 34(8): 3316-3326
    [71] 周海东, 黄霞, 文湘华. 城市污水中有关新型微污染物PPCPs归趋研究的进展[J]. 环境工程学报, 2008, 1(12): 1-9
    [72] 胡洪营, 王超, 郭美婷. 药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J]. 生态环境, 2005, 14(6): 947-952
    [73] 曾祥英, 张晓岚, 钱光人, 等. 苏州河沉积物中多环麝香分布特点的初步研究[J]. 环境科学学报, 2008, 28(1): 180-184
    [74] Bedoux G, Roig B, Thomas O, et al. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment[J]. Environmental Science and Pollution Research, 2012, 19(4): 1044-1065
    [75] Lindqvist N, Tuhkanen T, Kronberg L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters[J]. Water Research, 2005, 39(11): 2219-2228
    [76] 杨颖, 黄国兰, 孙红文. 烷基酚和烷基酚聚氧乙烯醚的环境行为[J]. 安全与环境学报, 2005, 5: 38-43
    [77] 邱志群, 舒为群, 曹佳. 我国水中有机物及部分持久性有机物污染现状[J]. 癌变. 畸变. 突变, 2007, 19(3): 188-193
    [78] 黄卫国, 唐建辉, 陈颖军, 等. 山东半岛典型海湾中烷基酚及双酚A的分布特征[J]. 海洋环境科学, 2012;31:358-363
    [79] 边海燕. 河口近海环境中烷基酚的分布特征与潜在生态风险评估[D]. 青岛: 中国海洋大学硕士学位论文, 2010
    [80] 沈钢, 张祖麟, 余刚, 等. 夏季海河与渤海湾中壬基酚和辛基酚污染的状况[J]. 中国环境科学, 2005, 25(6): 733-736
    [81] 傅明珠, 李正炎, 王波. 夏季长江口及其临近海域不同环境介质中壬基酚的分布特征[J]. 海洋环境科学, 2008, 27: 561-565
    [82] 董军, 李向丽, 梁锐杰. 珠江口地区水体中双酚A污染及其与环境因子的关系[J]. 生态与农村环境学报, 2009, 25: 94-97
    [83] Gitipour A, El Badawy A, Arambewela M, et al. The impact of silver nanoparticles on the composting of municipal solid waste[J]. Environmental Science & Technology 2013, 47(24): 14385-14393
    [84] Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science 2006, 311(5761): 622-627
    [85] Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufactured nanomaterials[J]. Environmental Science & Technology 2006, 40(14): 4336-4345
    [86] Castro L, Blázquez M L, Muoz J A, et al. Biological synthesis of metallic nanoparticles using algae[J]. IET Nanobiotechnology, 2013, 7(3):109-116
    [87] Yin Y, Liu J, Jiang G. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter[J]. ACS nano, 2012, 6(9): 7910-7919
    [88] 章军, 杨军, 朱心强. 纳米材料的环境和生态毒理学研究进展[J]. 生态毒理学报, 2006, 1(4): 350-356
    [89] Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics[J]. Environmental Science & Technology 2008, 42(11): 4133-4139
    [90] Rico C M, Majumdar S, Duarte-Gardea M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain[J]. Journal of Agricultural and Food Chemistry 2011, 59(8): 3485-3498
    [91] Dobias J, Bernier-Latmani R. Silver release from silver nanoparticles in natural waters[J]. Environmental Science & Technology 2013, 47(9): 4140-4146
    [92] Fabrega J, Luoma S N, Tyler C R, et al. Silver nanoparticles: Behaviour and effects in the aquatic environment[J]. Environment International 2011, 37(2): 517-531
    [93] Levard, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E.coli[J]. Environmental Science & Technology, 2013, 47(11): 5738-5745
    [94] Oukarroum A, Barhoumi L, Pirastru L, et al. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba[J]. Environmental Toxicology and Chemistry, 2013, 32(4): 902-907
    [95] Wang Z, Liu S, Ma J, et al. Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells[J]. ACS nano, 2013, 7(5): 4171-4186
    [96] Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage[J]. Science of the total environment, 2011, 409(8): 1444-1452
    [97] 张宁, 金星龙, 李晓, 等. 人工纳米材料对藻类的毒性效应研究进展[J]. 安徽农业科学, 2011, 39(10):6000-6003
    [98] Frase R T W K, Reinardy H C, Shaw B J, et al. Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss)[J]. Nanotoxicology, 2011, 5(1): 98-108
    [99] 杨红莲, 袭著革, 闫峻, 等. 新型污染物的生态效应和潜在健康影响研究进展[C]. 中国毒理学会环境与生态毒理学专业委员会成立大会会议论文集, 2008
    [100] Handy R D. FSBI briefing paper: Nanotechnology in fisheries and aquaculture[J]. Fisheries Society of the British Isles, 2012
    [101] 江桂斌, 刘稷燕, 周群芳, 等. 我国部分内陆水域有机锡污染现状初探[J]. 环境科学学报, 2000, 20(5): 636-638
    [102] 刘子宏, 王翔, 贾光. 纳米材料在环境领域的应用及其负面效应[J]. 国外医学卫生学分册, 2006, 33(5): 310-315
    [103] 王亚韡, 王宝盛, 傅建捷, 等. 新型有机污染物研究进展[J]. 化学通报 2013, 76(1): 3-14
    [104] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展[J]. 中国科学:化学, 2010, 40(2): 99-123
  • 加载中
计量
  • 文章访问数:  1230
  • HTML全文浏览数:  1230
  • PDF下载数:  1671
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-11-03

长江口及近海水环境中新型污染物研究进展

  • 1.  华东师范大学河口海岸学国家重点实验室, 上海, 200062;
  • 2.  香港城市大学深圳研究院, 深圳, 518057
基金项目:

国家自然科学基金(41101489),广东省自然科学基金(s2012010010847),教育部新世纪优秀人才计划项目(NECT-12-0181),华东师范大学高层次人才经费(79631916),河口海岸学国家重点实验室自主课题(2012RCDW-01)资助.

摘要: 随着新型污染物分析检测技术进步和人们认识深入,发现许多新型污染物已经在世界范围内对生态系统造成了污染,虽然其在环境中的含量很低,但由于其稳定性、生物富集性和高毒性,给生态环境和人类健康造成巨大威胁.本文主要针对持久性有机污染物、药品及个人护理用品、内分泌干扰物、纳米材料等重要新型污染物,综述了长江口及近海水环境中新型污染物的污染现状,与国内外主要河口海湾地区新型污染物的污染水平进行了比较,并对今后主要研究方向进行了展望,以期为长江口地区开展新型污染物的环境毒理和生态风险评估研究提供参考.

English Abstract

参考文献 (104)

目录

/

返回文章
返回