饮用水汞暴露对小鼠免疫系统的毒性

李玄, 王锐, 尹大强. 饮用水汞暴露对小鼠免疫系统的毒性[J]. 环境化学, 2014, 33(9): 1427-1432. doi: 10.7524/j.issn.0254-6108.2014.09.012
引用本文: 李玄, 王锐, 尹大强. 饮用水汞暴露对小鼠免疫系统的毒性[J]. 环境化学, 2014, 33(9): 1427-1432. doi: 10.7524/j.issn.0254-6108.2014.09.012
LI Xuan, WANG Rui, YIN Daqiang. Immunotoxic effects of mercury exposure via drinking water[J]. Environmental Chemistry, 2014, 33(9): 1427-1432. doi: 10.7524/j.issn.0254-6108.2014.09.012
Citation: LI Xuan, WANG Rui, YIN Daqiang. Immunotoxic effects of mercury exposure via drinking water[J]. Environmental Chemistry, 2014, 33(9): 1427-1432. doi: 10.7524/j.issn.0254-6108.2014.09.012

饮用水汞暴露对小鼠免疫系统的毒性

  • 基金项目:

    高等学校博士点基金(20130072120031);国家自然科学基金(51278353);博士点基金(20110072110021)资助.

Immunotoxic effects of mercury exposure via drinking water

  • Fund Project:
  • 摘要: 通过饮用水对小鼠进行氯化汞和氯化甲基汞暴露,连续暴露14 d后,采集小鼠血样、脾脏与胸腺.分别采用MTT法、LDH释放法和ELISA等方法评价了汞暴露对小鼠胸腺、脾脏的淋巴细胞体外增殖系数、自然杀伤细胞杀伤系数和血清中细胞因子(IL-2和TNF-α)分泌量的影响.实验结果显示:(1)汞暴露抑制了淋巴细胞的增殖性能和自然杀伤细胞杀伤活性,并具有浓度依赖性,且MeHg的抑制作用明显高于Hg2+;(2)MeHg和Hg2+暴露同样对IL-2的分泌具有抑制作用但不具有浓度依赖性;(3)汞暴露对TNF-α分泌的影响依汞的形态和浓度不同而不同,如MeHg对其具有明显抑制作用,Hg2+在低浓度时对TNF-α的分泌具有一定的促进作用,而高浓度时为抑制作用.
  • 加载中
  • [1] Clarkson T W. The three modern faces of mercury[J]. Environmental Health Perspectives, 2002, 110(Suppl 1): 11-23
    [2] Gray J S. Biomagnification in marine systems: The perspective of an ecologist[J]. Marine Pollution Bulletin, 2002. 45(1/12): 46-52
    [3] 谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6): 926-936
    [4] Zhang H, Feng X B, Larssen T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9): 1183-1188
    [5] 陈影, 邵玉芳. 汞污染及人体负荷研究进展[J]. 环境化学, 2012, 31(12):1934-1941
    [6] Tchounwou P B, Ayensu W K, Ninashvili N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health[J]. Environmental Toxicology, 2003, 18(3): 149-175
    [7] Atchison W D, Hare M F. Mechanisms of methylmercury-induced neurotoxicity[J]. Faseb Journal, 1994, 8(9): 622-629
    [8] Vas J, Monestier M. Immunology of mercury[J]. The Year in Immunology, 2008, 1143:240-267
    [9] 刘颖, 孙志伟. 汞的免疫毒性研究进展[J]. 中国公共卫生, 2005, 21(2): 234-236
    [10] Shenker B J, Guo T L, Shapiro I M. Low-level methylmercury exposure causes human T-cells to undergo apoptosis: Evidence of mitochondrial dysfunction[J]. Environmental Research, 1998, 77(2): 149-159
    [11] Bridges C C, Zalups R K. Transport of inorganic mercury and methylmercury in target tissues and organs[J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(5):385-410
    [12] 陈慰峰. 医学免疫学[M]. 北京:人民卫生出版社, 2004
    [13] Janeway Jr C A. Immunobiology (6th ed)[M]. New York:Garland Science, 2004, 25-48
    [14] Burchiel S W, Lauer F T, McDonald J D, et al. Systemic immunotoxicity in AJ mice following 6-month whole body inhalation exposure to diesel exhaust[J]. Toxicology and Applied Pharmacology, 2004, 196(3): 337-345
    [15] Korzeniewski C, Callewaert D M. An enzyme-release assay for natural cytotoxicity[J]. Journal of immunological methods 1983, 64:313-320
    [16] Ralston N V C, Blackwell J L, Raymond L J. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity[J]. Biological Trace Element Research, 2007, 119(3): 255-268
    [17] Kim S H, Johnson V J, Sharma R P. Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice[J]. Archives of Toxicology, 2003, 77(11): 613-620
    [18] Yang D Y, Chen Y W, Gunn J M, et al. Selenium and mercury in organisms: Interactions and mechanisms[J]. Environmental Reviews, 2008, 16:71-92
    [19] Ilback N G. Effects of methyl mercury exposure on spleen and blood natural killer (NK) cell activity in the mouse[J]. Toxicology, 1991, 67(1): 117-124
    [20] Ilback N G, Sundberg J, Oskarsson A. Methyl mercury exposure via placenta and milk impaired natural killer (NK) cell function in newborn rats[J]. Toxicology letters, 1991, 58(2): 149-158
    [21] Silva I A, Nabawi M E, Hoover D, et al. Prenatal HgCl2 exposure in BALB/c mice: Gender-specific effects on the ontogeny of the immune system[J].Developmental and Comparative Immunology, 2005, 29(2):171-183
    [22] Tonk E C M, De Groot D M G, Penninks A H, et al. Developmental immunotoxicity of methylmercury: The relative sensitivity of developmental and immune parameters[J]. Toxicological Science, 2010, 117(2): 325-335
  • 加载中
计量
  • 文章访问数:  853
  • HTML全文浏览数:  853
  • PDF下载数:  631
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-18

饮用水汞暴露对小鼠免疫系统的毒性

  • 1. 同济大学环境科学与工程学院, 上海, 200092
基金项目:

高等学校博士点基金(20130072120031);国家自然科学基金(51278353);博士点基金(20110072110021)资助.

摘要: 通过饮用水对小鼠进行氯化汞和氯化甲基汞暴露,连续暴露14 d后,采集小鼠血样、脾脏与胸腺.分别采用MTT法、LDH释放法和ELISA等方法评价了汞暴露对小鼠胸腺、脾脏的淋巴细胞体外增殖系数、自然杀伤细胞杀伤系数和血清中细胞因子(IL-2和TNF-α)分泌量的影响.实验结果显示:(1)汞暴露抑制了淋巴细胞的增殖性能和自然杀伤细胞杀伤活性,并具有浓度依赖性,且MeHg的抑制作用明显高于Hg2+;(2)MeHg和Hg2+暴露同样对IL-2的分泌具有抑制作用但不具有浓度依赖性;(3)汞暴露对TNF-α分泌的影响依汞的形态和浓度不同而不同,如MeHg对其具有明显抑制作用,Hg2+在低浓度时对TNF-α的分泌具有一定的促进作用,而高浓度时为抑制作用.

English Abstract

参考文献 (22)

目录

/

返回文章
返回