蒙脱石-OR-SH复合体修复剂对重金属污染土壤中Cd的钝化效果
A smectite-OR-SH compound for reducing cadmium uptake by pakchoi in contaminated soils
-
摘要: 利用溶剂分散法成功地将功能基团-SH嫁接到蒙脱石上,得到蒙脱石-OR-SH复合体材料,该复合体材料对Cd的饱和吸附容量可达37.82 mg·g-1(0.1 mol·L-1KNO3体系)和69.13 mg·g-1(不考虑离子浓度影响).通过小白菜盆栽和大田试验探讨了该复合体材料对Cd污染土壤的钝化效果.结果表明,在Cd污染土壤上施加蒙脱石-OR-SH复合体材料后,土壤中可交换态Cd形态占比分别低了64.51%(原土)和80.37%(3 mg·kg-1 Cd含量的成化土),铁锰氧化结合态Cd形态占比分别提升了176.66%(原土)和418.31%(3 mg·kg-1 Cd含量的成化土),降低了毒性元素Cd在土壤中的活性和可移动性,有效地固定了土壤中的Cd,小白菜中镉含量比对照分别降低了57.14%(原土)和60.64%(3 mg·kg-1Cd含量的成化土),同时能促进小白菜的生长.
-
关键词:
- 蒙脱石-RO-SH复合体 /
- 镉 /
- 形态 /
- 钝化
Abstract: A smectite-OR-SH compound was prepared in lab. The adsorption capacity of the compound for cadmium was up to 37.82 mg·g-1in 0.1 mol·L-1KNO3 solution and 69.13 mg·g-1 in water. Pot and field experiments were conducted to investigate the immobilization effect and mechanism of the compound for reducing cadmium uptake by pakchoi in contaminated soils. The results showed that the cadmium of activated fraction decreased by 64.51% in raw soil and 80.37% in 3 mg·kg-1Cd soil after adding the smectite-OR-SH compound. The cadmium of Fe-Mn oxide fractions increased by 176.66% in raw soil and 418.31% in 3 mg·kg-1Cd soil. The compound inhibited the adsorption and accumulation of cadmium in pakchoi, and the cadmium content decreased by 57.14%-60.64% comparing to the control. The compound also promoted the growth of pakchoi.-
Key words:
- smectite-OR-SH compound /
- cadmium /
- speciation /
- immobilization
-
-
[1] 施婉君,靳治国,周培. 上海市土壤重金属污染研究进展[J]. 上海环境科学,2009,28:72-75 [2] 万凯,王富华,张冲,等. 东莞农田土壤重金属污染调查分析[J]. 广东农业科学,2010, 6:198-200 [3] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151 [4] 周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004 [5] Bolland M D A, Posner A M, Quirk J P. Zn adsorption by goethite in the absence and presence of phosphate[J]. Australian Journal of Soil Research, 1977, 15:279-286 [6] Diels L, van der Lelie N, Bastiaens L. New developments in treatment of heavy metal contaminated soil[J]. Review of Environmental Science and Bio/Technology, 2002, 1:75-82 [7] 郭观林,周启星,李秀颖. 重金属污染土壤原位化学固定修复研究进展[J]. 应用生态学报,2005,16:1990-1996 [8] Guo G L, Zhou Q X, Ma L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soil: A review[J]. Environmental Monitoring and Assessment, 2006, 116:513-528 [9] Brown S, Chaney R L, Hallfrish J G, et al. Effects of biosolids processing on lead bioavailability in an urban soil[J]. Journal of Environmental Quality, 2003, 32: 100-108 [10] Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. Ⅰ. Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J]. Environmental Pollution, 2006, 144: 524-532 [11] Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leading in shooting range soils using poultry waste amendments in combination with indigenous plant species[J]. Chemosphere, 2008, 73: 643-649 [12] Zhang L Y, Shen Q R, Jiang Y. Effects of organic manure on the amelioration of Cd-polluted soil[J]. Acta Pedologica Sinica, 2001, 38(2):212-218 [13] Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution, 2005, 138: 34-45 [14] Brown S L, Henry C L, Chaney R L, et al. Using municipal biosolids in combination with other residuals to restore metal-contaminated mining area's[J]. Plant and Soil, 2003, 249: 203-215 [15] Madrid F, Romero A S, Madrid L, et al. Reduction of availability of trace metals in urban soils using inorganic amendments[J]. Environmental Geochemistry and Health, 2006, 28: 365-373 [16] Madrid F, Diaz-Barrientos E, Florido M C. Inorganic amendments to decrease metal availability in soils of recreational urban areas: Limitations to their efficiency and possible drawbacks[J]. Water, Air, and Soil Pollution, 2008, 192: 117-125 [17] Zhang Y S, Sun W, Chen Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J]. Journal of Hazardous Materials, 2007, 143: 206-213 [18] 李娜,李惠卓,刘文菊. 不同pH条件下添加纳米型蒙脱土和高岭土对溶液中铜的去除效果研究[J]. 中国土壤与肥料,2011, 3:57-61 [19] 彭荣华,李小湘. 酸改性膨润土吸附去除镍镉离子的研究[J]. 材料保护,2006, 39(1):65-67 [20] 谭科艳,刘晓端,黄园英. 固定配比的钠化膨润土与土壤在不同pH条件下对重金属的吸附效果研究[J]. 岩矿测试,2010,29(4):411-413 [21] 孙艳,成杰民,荆林晓. 猪粪降解液改性钠基膨润土对三种土壤中重金属有效态影响[J]. 湖北农业科学,2010,49(10):2404-2406 [22] Tessier A. Campbell P G C. Comment on"Pitfalls of sequential extraction"by F. M. M. MOREL[J]. Water Res,1991,25(1): 115-117 [23] Diaz M, Cambier P, Brendle J, et al. Functionlized clay heterostructures for reducing cadmium and lead uptake by plants in contaminated soils[J]. Applied Clay Science, 2007, 37:12-22 [24] Angela de Mello Ferreira Guimaraes, Virginia Sampaio T Ciminelli, Wander Luiz Vasconcelos. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions[J]. Applied Clay Science, 2009, 42:410-414 [25] 冯超,刘文华,赵秋香,等. 一种治理土壤重金属污染的巯基-蒙脱石复合体材料及其制备方法. 2012,国家发明专利申请号:CN201210139593.0.公开号:CN102660293 A
[26] 王亚平,黄毅,王苏明,等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8): 728-734 [27] 王意锟. 有机物料、黏土矿物对重金属污染土壤的修复[J]. 南京: 南京林业大学硕士学位论文,2009 [28] 易秀,杨胜科,胡安焱. 土壤化学与环境[M]. 北京: 化学工业出版社, 2007:13-39 -

计量
- 文章访问数: 1538
- HTML全文浏览数: 1458
- PDF下载数: 678
- 施引文献: 0