亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏

冯新斌, 王训, 林哲仁, 付学吾. 亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏[J]. 环境化学, 2015, 34(2): 203-211. doi: 10.7524/j.issn.0254-6108.2015.02.2014110708
引用本文: 冯新斌, 王训, 林哲仁, 付学吾. 亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏[J]. 环境化学, 2015, 34(2): 203-211. doi: 10.7524/j.issn.0254-6108.2015.02.2014110708
FENG Xinbin, WANG Xun, LIN Zheren, FU Xuewu. Biogeochemical cycling and isotopic fractionation of mercury in subtropical and temperate forest ecosystem[J]. Environmental Chemistry, 2015, 34(2): 203-211. doi: 10.7524/j.issn.0254-6108.2015.02.2014110708
Citation: FENG Xinbin, WANG Xun, LIN Zheren, FU Xuewu. Biogeochemical cycling and isotopic fractionation of mercury in subtropical and temperate forest ecosystem[J]. Environmental Chemistry, 2015, 34(2): 203-211. doi: 10.7524/j.issn.0254-6108.2015.02.2014110708

亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏

  • 基金项目:

    国家自然科学基金项目(41430754)资助.

Biogeochemical cycling and isotopic fractionation of mercury in subtropical and temperate forest ecosystem

  • Fund Project:
  • 摘要: 汞是通过大气进行长距离传输的全球污染物,引起国际社会和学术界高度关注.陆地森林生态系统是全球物质循环最为活跃的地方,但其对全球汞的生物地球化学循环影响的认识还不清楚.同时,森林生态系统汞的生物地球化学循环过程可能对全球大气汞同位素组成产生重要的影响,但目前这两方面的研究还非常缺乏,制约了对全球尺度汞的生物地球化学循环深化规律的把握.本课题组拟在我国温带和亚热带选择3个森林小流域,首先系统开展森林小流域汞的质量平衡研究工作,深入刻画森林流域汞的生物地球化学演化规律,在此基础上开展流域汞的生物地球化学循环过程中汞同位素的分馏特征研究,最终建立流域尺度森林系统汞及其同位素的生物地球化学模型.该项目将极大推进对森林流域尺度汞的生物地球化学循环的认识,探讨森林生态系统与大气汞交换过程对全球尺度汞生物地球化学循环和对大气汞同位素组成的影响,为最终建立基于汞同位素的全球汞生物地球化学循环模型提供基础数据.
  • 加载中
  • [1] Lindqvist O, Johansson K, Aastrup M, et al. Mercury in the swedish environment-recent research on causes, consequences and corrective methods[J]. Water Air and Soil Pollution, 1991, 55(1/2): R11-&
    [2] Selin N E, Global biogeochemical cycling of mercury: A review [J]. Annual Review of Environment and Resources, 2009, 34: 43-63
    [3] Selin, N E, Jacob D J, Park R J, et al. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations [J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D2): D02308.
    [4] Selin N E, Jacob D J, Yantosca R M, et al. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition [J]. Global Biogeochemical Cycles, 2008, 22(3)
    [5] Ryaboshapko A, Bullock O R Jr, Christensen J, et al. Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements [J]. Science of the Total Environment, 2007, 376(1/3): 228-240
    [6] Ryaboshapko A, Bullock O R Jr, Christensen J, et al. Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets[J]. Science of the Total Environment, 2007, 377(2/3): 319-333
    [7] Lin C J, Pongprueksa P, Lindberg S E, et al. Scientific uncertainties in atmospheric mercury models I: Model science evaluation [J]. Atmospheric Environment, 2006, 40(16): 2911-2928
    [8] Bullock O R, Brehme K A. Atmospheric mercury simulation using the CMAQ model: Formulation description and analysis of wet deposition results [J]. Atmospheric Environment, 2002, 36(13): 2135-2146
    [9] Ryaboshapko A, Bullock R, Ebinghaus R, et al. Comparison of mercury chemistry models [J]. Atmospheric Environment, 2002, 36(24): 3881-3898
    [10] Seigneur C, Karamchandani P, Lohman K, et al. Multiscale modeling of the atmospheric fate and transport of mercury [J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D21): 27795-27809
    [11] Bergan T, Gallardo L, Rodhe H. Mercury in the global troposphere: A three-dimensional model study [J]. Atmospheric Environment, 1999, 33(10): 1575-1585
    [12] Jung G, Hedgecock I M, Pirrone N. ECHMERIT V1.0-A new global fully coupled mercury-chemistry and transport model [J]. Geoscientific Model Development, 2009, 2(2): 175-195
    [13] Travnikov O, Lin C J, Dastoor A, et al. Hemispheric transport of air pollution part b: mercury, chapter 4, global and regional modelling// pirrone n, keating t. hemispheric transport of air pollution part b: mercur [M]. New York: UNITED NATIONS PUBLICATION, 2010, 97-138
    [14] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests [J]. Science, 2011, 333(6045): 988-993
    [15] Obrist D, Johnson D W, Lindberg S E, et al. Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils [J]. Environmental Science & Technology, 2011, 45(9): 3974-3981
    [16] Graydon J A, St Louis V L, Lindberg S E, et al. The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment [J]. Global Biogeochemical Cycles, 2012, 26(1):GB1022
    [17] Gustin M S, Lindberg S E, Weisberg P J. An update on the natural sources and sinks of atmospheric mercury [J]. Applied Geochemistry, 2008, 23(3):482-493
    [18] Obrist D. Atmospheric mercury pollution due to losses of terrestrial carbon pools? [J]. Biogeochemistry, 2007, 85(2): 119-123
    [19] Lindberg S E, Hanson P J, Meyers T P, et al. Air/surface exchange of mercury vapor over forests-The need for a reassessment of continental biogenic emissions [J]. Atmospheric Environment, 1998, 32(5): 895-908
    [20] Lindberg S E, Jackson D R, Huckabee J W, et al. Atmospheric emission and plant uptake of mercury from agricultural soils near the almaden mercury mine [J]. Journal of Environmental Quality, 1979, 8(4): 572-578
    [21] Shetty S K, Lin C J, Streets D G, et al. Model estimate of mercury emission from natural sources in East Asia [J]. Atmospheric Environment, 2008, 42(37): 8674-8685
    [22] Bash J O, Miller D R, Meyer T H, et al. Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model [J]. Atmospheric Environment, 2004, 38(33): 5683-5692
    [23] Gbor P K, Wen D Y, Meng F, et al. Improved model for mercury emission, transport and deposition [J]. Atmospheric Environment, 2006, 40(5): 973-983
    [24] Gustin M S, Ericksen J A, Schorran D E, et al. Application of controlled mesocosms for understanding mercury air-soil-plant exchange [J]. Environmental Science & Technology, 2004, 38(22): 6044-6050
    [25] Cui L W, Feng X B, Lin C J, et al. Accumulation and translocation of 198Hg in four crop species [J]. Environmental Toxicology and Chemistry, 2014, 33(2): 334-340
    [26] St Louis V L, Rudd J W M, Kelly C A, et al. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems [J]. Environmental Science & Technology, 2001, 35(15): 3089-3098
    [27] Siwik E I H, Campbell L M, Mierle G. Distribution and trends of mercury in deciduous tree cores [J]. Environmental Pollution, 2010, 158(6): 2067-2073
    [28] Yin R S, Feng X B, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China [J]. Environmental Science & Technology, 2013, 47(5): 2238-2245
    [29] Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition [J]. Ambio, 2007, 36(1): 19-32
    [30] Scherbatskoy T, Shanley J B, Keeler G J. Factors controlling mercury transport in an upland forested catchment [J]. Water Air and Soil Pollution, 1998, 105(1/2): 427-438
    [31] Schwesig D, Matzner E. Pools and fluxes of mercury and methylmercury in two forested catchments in Germany [J]. Science of the Total Environment, 2000,260(1/3): 213-223
    [32] .Larssen T, Wit H A, Wiker M, et al. Mercury budget of a small forested boreal catchment in southeast Norway [J]. Science of the Total Environment, 2008, 404(2/3): 290-296
    [33] Wang Z W, Zhang X S, Xiao J S, et al. Mercury fluxes and pools in three subtropical forested catchments, southwest China [J]. Environmental Pollution, 2009, 157(3): 801-808
    [34] Fu X W, Feng X B, Zhu W Z, et al. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China [J]. Environmental Pollution, 2010, 158(6): 2324-2333
    [35] Grigal D F. Inputs and outputs of mercury from terrestrial watersheds: A review [J]. Environmental Reviews, 2002, 10(1): 1-39
    [36] Grigal D F. Mercury sequestration in forests and peatlands: A review [J]. Journal of Environmental Quality, 2003, 32(2): 393-405
    [37] Hartman J S, Weisberg P J, Pillai R, et al. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental united states [J]. Environmental Science & Technology, 2009, 43(13): 4989-4994
    [38] Bash J O. Description and initial simulation of a dynamic bidirectional air-surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model [J]. Journal of Geophysical Research-Atmospheres, 2010. 115
    [39] Wang X, Lin C, Feng X. Sensitivity analysis of an updated bidirectional air-surface exchange model for mercury vapor [J]. Atmos Chem Phys Discuss, 2013(13): 32229-32267
    [40] Smith-Downey N V, Sunderland E M, Jacob D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model [J]. Journal of Geophysical Research-Biogeosciences, 2010. 115
    [41] Futter M N, Poste A E, Butterfield D, et al. Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments [J]. Science of the Total Environment, 2012, 424: 219-231
    [42] Estrade N, Carignan J, Sonke J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments [J]. Geochimica Et Cosmochimica Acta, 2009, 73(10): 2693-2711
    [43] Kritee K, Barkay T, Blum J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury [J]. Geochimica Et Cosmochimica Acta, 2009, 73(5): 1285-1296
    [44] Gratz L E, Keeler G J, Blum J D, et al. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air [J]. Environmental Science & Technology, 2010, 44(20): 7764-7770
    [45] Kritee K, Blum J D, Johnson M W, et al. Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms[J]. Environmental Science & Technology, 2007, 41(6): 1889-1895
    [46] Kritee K, Blum J D, Johnson M, et al. Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions [J]. Chemical Geology, 2013, 336: 13-25
    [47] Bergquist B A, Blum J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems [J]. Science, 2007, 318(5849): 417-420
    [48] Zheng W, Hintelmann H. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds [J]. Journal of Physical Chemistry A, 2010, 114(12): 4246-4253
    [49] Zheng W, Hintelmann H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light [J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245
    [50] Ghosh S, Xu Y F, Humayun M. et al. Mass-independent fractionation of mercury isotopes in the environment. Geochemistry Geophysics Geosystems, 2008. 9
    [51] Ghosh S, Schauble E A, Couloume G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments [J]. Chemical Geology, 2013, 336: 5-12
    [52] Chen J B, Hintelmann H, Feng X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada [J]. Geochimica Et Cosmochimica Acta, 2012, 90: 33-46
    [53] Feng X B, Foucher D, Hintelmann H, et al. Tracing mercury contamination sources in sediments using mercury isotope compositions [J]. Environmental Science & Technology, 2010, 44(9): 3363-3368
    [54] Gehrke G E, Blum J D, Slotton D G, et al. Mercury isotopes link mercury in San Francisco Bay Forage fish to surface sediments [J]. Environmental Science & Technology, 2011, 45(4): 1264-1270
    [55] Liu J L, Feng X B, Yin R S, et al. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China [J]. Chemical Geology, 2011, 287(1/2): 81-89
    [56] Feng X B, Yin R S, Yu B, et al. Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province, China [J]. Chinese Science Bulletin, 2013, 58(2): 249-255
    [57] Biswas A, Blum J D, Bergquist B A, et al. Natural mercury isotope variation in coal deposits and organic soils [J]. Environmental Science & Technology, 2008, 42(22): 8303-8309
    [58] Li Z G, Feng X B, Li G H, et al. Mass Balance and Isotope Characteristics of Mercury in Two Coal-fired Power Plants in Guizhou, China [J]. Advances in Environmental Science and Engineering, PTS 1-6, 2012, 518-523: 2576-2579
    [59] Jackson T A, Muir D C G. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal [J]. Science of the Total Environment, 2012, 417: 189-203
    [60] Sonke J E. A global model of mass independent mercury stable isotope fractionation [J]. Geochimica Et Cosmochimica Acta, 2011, 75(16): 4577-4590
    [61] Demers J D, Blum J D, Zak D R. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle [J]. Global Biogeochemical Cycles, 2013, 27(1): 222-238
    [62] Zhang H, Yin R S, Feng X B, et al. Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures [J]. Scientific Reports, 2013. 3
    [63] 冯新斌, 付学吾, SOMMAR J, et al. 地表自然过程排汞研究进展及展望 [J]. 生态学杂志, 2011, 30(5): 845-856
    [64] Eckley C S, Gustin M, Lin C J, et al. The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes [J]. Atmospheric Environment, 2010, 44(2): 194-203
    [65] Lin C J, Zhu W, Li X, et al. Novel dynamic flux chamber for measuring air-surface exchange of Hgo from soils. Environmental Science & Technology, 2012, 46(16): 8910-8920
    [66] Sommar J, Zhu W, Lin C J, et al. Field approaches to measure Hg exchange between natural surfaces and the atmosphere-A review [J]. Critical Reviews in Environmental Science and Technology, 2013,43(15): 1657-1739
    [67] Converse A D, Riscassi A L, Scanlon T M. Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow [J]. Atmospheric Environment, 2010, 44(18): 2176-2185
    [68] Fritsche J, Wohlfahrt G, Ammann C, et al. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale [J]. Atmospheric Chemistry and Physics, 2008, 8(24): 7709-7722
    [69] Zemmelink H J, Gieskes W W C, Klaassen W, et al. Relaxed eddy accumulation measurements of the sea-to-air transfer of dimethylsulfide over the northeastern Pacific [J]. Journal of Geophysical Research-Oceans, 2004, C1
    [70] Haapanala S, Rinne J, Pystynen K H, et al. Measurements of hydrocarbon emissions from a boreal fen using the REA technique [J]. Biogeosciences, 2006, 3(1): 103-112
    [71] Meyers T P, Luke W T. Fluxes of ammonia and sulfate over maize using relaxed eddy accumulation [J]. Agricultural and Forest Meteorology, 2006, 136: 203-213
    [72] Pryor S C, Larsen S E, Sorensen L L, et al. Particle fluxes above forests: Observations, methodological considerations and method comparisons [J]. Environmental Pollution, 2008, 152(3): 667-678
    [73] Sutton M, Milford C, Nemitz E, et al. Biosphere-atmosphere interactions of ammonia with grasslands: Experimental strategy and results from a new European initiative [J]. Plant and Soil, 2001, 228(1): 131-145
    [74] Pattey E, Desjardins R L, Westberg H, et al. Measurement of isoprene emissions over a black spruce stand using a tower-based relaxed eddy-accumulation system [J]. Journal of Applied Meteorology, 1999, 38(7): 870-877
    [75] Cobos D R, Baker J M. Conditional sampling for measuring mercury vapor fluxes [J]. Atmospheric Environment, 2002, 36: 4309-4321
    [76] Bash J O, Miller D R. A relaxed eddy accumulation system for measuring surface fluxes of total gaseous mercury [J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(2): 244-257
    [77] Sommar J, Zhu W, Shang L, et al. A whole-air relaxed eddy accumulation measurement system for sampling vertical vapor exchange of elemental mercury [J]. Tellus Series B-Chemical and Physical Meteorology, 2013, 65: 19940
    [78] Zhu W, Sommar J, Li Z, et al. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill [J]. Atmospheric Environment, 2013, 79(0): 540-545
    [79] Fu X, Heimburger L E, Sonke J E. Collection of atmospheric gaseous mercury for stable isotope analysis using iodine- and chlorine-impregnated activated carbon traps [J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5):841-852
    [80] Chen J B, Hintelmann H, Dimock B. Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2010, 25(9): 1402-1409
  • 加载中
计量
  • 文章访问数:  1118
  • HTML全文浏览数:  762
  • PDF下载数:  968
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-11-07
  • 刊出日期:  2015-02-15

亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏

  • 1. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
基金项目:

国家自然科学基金项目(41430754)资助.

摘要: 汞是通过大气进行长距离传输的全球污染物,引起国际社会和学术界高度关注.陆地森林生态系统是全球物质循环最为活跃的地方,但其对全球汞的生物地球化学循环影响的认识还不清楚.同时,森林生态系统汞的生物地球化学循环过程可能对全球大气汞同位素组成产生重要的影响,但目前这两方面的研究还非常缺乏,制约了对全球尺度汞的生物地球化学循环深化规律的把握.本课题组拟在我国温带和亚热带选择3个森林小流域,首先系统开展森林小流域汞的质量平衡研究工作,深入刻画森林流域汞的生物地球化学演化规律,在此基础上开展流域汞的生物地球化学循环过程中汞同位素的分馏特征研究,最终建立流域尺度森林系统汞及其同位素的生物地球化学模型.该项目将极大推进对森林流域尺度汞的生物地球化学循环的认识,探讨森林生态系统与大气汞交换过程对全球尺度汞生物地球化学循环和对大气汞同位素组成的影响,为最终建立基于汞同位素的全球汞生物地球化学循环模型提供基础数据.

English Abstract

参考文献 (80)

目录

/

返回文章
返回