改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复

丁振亮, 赵玲, 续晓云, 罗启仕, 曹心德. 改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复[J]. 环境化学, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
引用本文: 丁振亮, 赵玲, 续晓云, 罗启仕, 曹心德. 改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复[J]. 环境化学, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
DING Zhenliang, ZHAO Ling, XU Xiaoyun, LUO Qishi, CAO Xinde. Enhanced immobilization of Pb/Zn in compound contaminated soil by modified natural phosphate rock[J]. Environmental Chemistry, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
Citation: DING Zhenliang, ZHAO Ling, XU Xiaoyun, LUO Qishi, CAO Xinde. Enhanced immobilization of Pb/Zn in compound contaminated soil by modified natural phosphate rock[J]. Environmental Chemistry, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005

改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复

  • 基金项目:

    国家自然科学基金项目(21107070,21377081),上海市科委支撑重点项目(13231202502)资助.

Enhanced immobilization of Pb/Zn in compound contaminated soil by modified natural phosphate rock

  • Fund Project:
  • 摘要: 采用草酸和柠檬酸分别与天然磷灰石共培养以对其改性,并将改性磷灰石用于Pb/Zn复合污染土壤的稳定化修复,借助XRD、FTIR等仪器方法表征改性磷灰石的物相组成及其P结合形态的转变,采用TCLP方法评价改性天然磷灰石对土壤重金属的修复效果.研究表明,草酸改性磷灰石诱导了草酸钙生成,并且32.4%的P由稳定形态转化为水溶态,而柠檬酸改性未能使磷灰石主要成分发生显著变化,仅有0.28%的P转化为水溶态P.与天然磷灰石相比,改性磷灰石提高了对Pb和Zn的稳定性.草酸改性磷灰石可同时有效地稳定土壤中的Pb和Zn,稳定化效率分别为68%—100%和64%—73%,其固定机制主要是形成难溶的磷酸盐沉淀;柠檬酸改性磷灰石对Pb和Zn的稳定化效率分别为<20%和62%—69%,对Pb和Zn的稳定性主要是通过吸附作用.总之,草酸改性磷灰石对Pb和Zn的稳定化优于柠檬酸改性磷灰石,是一种高效经济的土壤重金属稳定化修复材料.
  • 加载中
  • [1] 顾家伟.我国城市街尘重金属污染研究进展与趋势[J].地球与环境, 2014, 42(5):695-701
    [2] 吴烈善, 吕宏虹, 苏翠翠, 等. 环境友好型淋洗剂对重金属污染土壤的修复效果[J].环境工程学报, 2014, 8(10):4487-4491
    [3] Fisher I J, Pain D J, Thomas V G, et al. A review of lead poisoning from ammunition sources in terrestrial birds[J]. Biological Conservation, 2006, 131(3): 421-432
    [4] Cao X D, Ma L Q, Chen M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science and Technology, 2002, 36(24): 5296-5304
    [5] Cao X D, Ma L Q, Rhue D R, et al. Mechanisms of lead, copper and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131(3): 435-444
    [6] Cao X D, Wahbic A, Ma L N, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2/3):555-564
    [7] 梁媛, 王晓春, 曹心德, 等. 基于磷酸盐、碳酸盐和硅酸盐材料化学钝化修复重金属污染土壤的研究进展[J]. 环境化学, 2012, 31(1):17-23
    [8] Park J H, Bolan N, Megharaj M, et al. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils[J]. Science of the Total Environment, 2011, 409(4): 853-860
    [9] Mignardi S, Corami A, Ferrini V, et al. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn[J]. Chemosphere, 2012, 86: 354-360
    [10] Song Y C, Sivakumar S, Nguyen T, et al. The immobilization of heavy metals in biosolids using phosphate amendments - Comparison of EPA (6010 and 3051) and selective sequential extraction methods[J].Hazardous Material, 2009, 167(1/3): 1033-1037
    [11] Tang W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2): 223-229
    [12] Chaney L R, Ryan J A. Risk based standards for arsenic, lead, and cadmium in urban soils[S]. Dechema, Frankfurt, 1994: 130
    [13] 刘永红, 马苏威, 岳霞丽, 等. 土壤环境中的小分子有机酸及其环境效应[J].环境农业大学学报, 2014, 33(2):133-138
    [14] Kpomblekou K, Tabatabai M A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils[J]. Agriculture, Ecosystems and Environment, 2003, 100:275-283
    [15] Jiang G J, Liu Y H, Huang L, et al. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks[J].Journal of Environmental Science, 2012, 24(5):919-925
    [16] Chen S B, Ma Y B, Chen L, et al.Comparison of Pb(Ⅱ) immobilized by bone char meal and phosphate rock: Characterization and kinetic study[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(1): 24-32
    [17] USEPA. Test methods for evaluating solid wastes. SW-846.3rd[S]. US Gov Print Office, Washington, DC, 1986
    [18] 许学慧, 姜冠杰, 胡红青, 等.草酸活化磷矿粉对矿区污染土壤中Cd的钝化效果[J].农业环境科学学报, 2011, 30(11):2005-2011
    [19] Wu P X, Liao Z W. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism[J]. Journal of Zhejiang University Science, 2005, 6B(3): 195-201
    [20] Slosarczyk A, Paszkiewicza Z, Paluszkiewicz C, et al. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods[J]. Journal of Molecular Structure, 2005, 10: 657-661
    [21] Bhadang K A, Gross K A. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings[J]. Biomaterials, 2004, 25(20): 4935-4945
    [22] Veerasingam S, Venkatachalapathy R. Estimation of carbonate concentration and characterization of marine sediments by Fourier transform infrared spectroscopy[J].Infrared Physics & Technology, 2014, 66:136-140
    [23] Gholizadeh, Hojjat, Naserian, et al. Detecting carbohydrate molecular structural makeup in different types of cereal grains and different cultivars within each type of grain grown in semi-arid area using FTIR spectroscopy with uni- and multivariate molecular spectral analyses[J].Animal Feed Science and Technology, 2014, 94:136-144
    [24] Mohamed A A, Arunai N R N, Kalainathan S, et al. Microhardness and acoustic behavior of calcium oxalate monohydrate urinary stone[J]. Materials Letters, 2008, 62(15): 2351-2354
    [25] Koleva V, Stefov V, Cahil A, et al. Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H2PO4)2·2H2O. Ⅰ: Region of the vibrations of the phosphate ions and external modes of the water molecules[J]. Journal of Molecular Structure, 2009, 6:117-124
    [26] 王金磊, 王爱琴 聚丙烯酸/羟基磷灰石复合吸附剂对Pb(Ⅱ)的吸附行为[J].安全与环境报, 2009, 9(2):29
    [27] Zhu Y N, Zhang X H, Chen Y D, et al. A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25 ℃ and 45 ℃[J]. Chemical Geology, 2009, 268: 94-95
    [28] Liu Y H, Feng L, Hu H Q, et al. Phosphorus release from low-grade rock phosphates by low molecular weight organic acids[J].Journal of Food, Agriculture & Environment, 2012, 10(1):1001-1007
    [29] Hu H F, Liu S L, Jie X L et al. The role of low molecular weight organic acids on mineral dissolution[J]. Chin Agr Sci Bull, 2005, 21(4):105-110
    [30] 王彩虹, 牛晓君, 周兴求, 等. 不同pH条件下沉积磷释放到水体中化学行为的模拟研究[J].四川环境, 2006, 25(1):20-22
    [31] McGowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality, 2001, 30(2):493-500
    [32] Yoo Munsuk S, James Bruce R. James zinc exchangeability as a function of phicitric acid-amended soil[J]. Soil Science, 2003, 03:356-367
    [33] Ownby D R, Galvan K A, Lydy M J.Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils[J].Environmental Pollution, 2005, 136:315-321
    [34] Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances [J].Chemosphere, 2003, 52(1): 265-275
  • 加载中
计量
  • 文章访问数:  1385
  • HTML全文浏览数:  1298
  • PDF下载数:  716
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-10-20
  • 刊出日期:  2015-06-15
丁振亮, 赵玲, 续晓云, 罗启仕, 曹心德. 改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复[J]. 环境化学, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
引用本文: 丁振亮, 赵玲, 续晓云, 罗启仕, 曹心德. 改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复[J]. 环境化学, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
DING Zhenliang, ZHAO Ling, XU Xiaoyun, LUO Qishi, CAO Xinde. Enhanced immobilization of Pb/Zn in compound contaminated soil by modified natural phosphate rock[J]. Environmental Chemistry, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005
Citation: DING Zhenliang, ZHAO Ling, XU Xiaoyun, LUO Qishi, CAO Xinde. Enhanced immobilization of Pb/Zn in compound contaminated soil by modified natural phosphate rock[J]. Environmental Chemistry, 2015, 34(6): 1049-1056. doi: 10.7524/j.issn.0254-6108.2015.06.2014102005

改性天然磷灰石促进Pb/Zn复合污染土壤的稳定化修复

  • 1.  上海交通大学环境科学与工程学院, 上海, 200240;
  • 2.  上海市环境科学研究院, 上海, 200240
基金项目:

国家自然科学基金项目(21107070,21377081),上海市科委支撑重点项目(13231202502)资助.

摘要: 采用草酸和柠檬酸分别与天然磷灰石共培养以对其改性,并将改性磷灰石用于Pb/Zn复合污染土壤的稳定化修复,借助XRD、FTIR等仪器方法表征改性磷灰石的物相组成及其P结合形态的转变,采用TCLP方法评价改性天然磷灰石对土壤重金属的修复效果.研究表明,草酸改性磷灰石诱导了草酸钙生成,并且32.4%的P由稳定形态转化为水溶态,而柠檬酸改性未能使磷灰石主要成分发生显著变化,仅有0.28%的P转化为水溶态P.与天然磷灰石相比,改性磷灰石提高了对Pb和Zn的稳定性.草酸改性磷灰石可同时有效地稳定土壤中的Pb和Zn,稳定化效率分别为68%—100%和64%—73%,其固定机制主要是形成难溶的磷酸盐沉淀;柠檬酸改性磷灰石对Pb和Zn的稳定化效率分别为<20%和62%—69%,对Pb和Zn的稳定性主要是通过吸附作用.总之,草酸改性磷灰石对Pb和Zn的稳定化优于柠檬酸改性磷灰石,是一种高效经济的土壤重金属稳定化修复材料.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回