广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究

张海龙, 李祥平, 齐剑英, 陈永亨, 方建德. 广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究[J]. 环境化学, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
引用本文: 张海龙, 李祥平, 齐剑英, 陈永亨, 方建德. 广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究[J]. 环境化学, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
ZHANG Hailong, LI Xiangping, QI Jianying, CHEN Yongheng, FANG Jiande. Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator(MSWI) in Guangdong[J]. Environmental Chemistry, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
Citation: ZHANG Hailong, LI Xiangping, QI Jianying, CHEN Yongheng, FANG Jiande. Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator(MSWI) in Guangdong[J]. Environmental Chemistry, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904

广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究

  • 基金项目:

    国家自然科学基金(41203061)

    公益性科研专项计划课题(201509051)资助.

Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator(MSWI) in Guangdong

  • Fund Project:
  • 摘要: 以广东某垃圾焚烧炉为研究对象,应用富集因子法、主成分分析法对其周边环境空气中金属(Fe、Al、Mg、Cu、Zn、Mn、Ba、Pb、Cr、Ni、Bi和Cd)含量及来源进行分析.结果如下:研究区域环境空气中各金属含量(各点均值)(ngm-3)为:Fe (1092 3487) Al(9393126) Mg(7161339) Cu (63.4995) Zn (227427) Mn(162 291.1) Ba(61.4372) Pb(21.941.8) Cr(12.3 25.7) Ni (5.7015.5) Bi (0.701.22) Cd (0.420.82).相关分析和主成分分析发现,研究区域Fe与Ni、Cr、Mn、Ba主要来自于焚烧炉释放,Zn、Cd、Pb、Bi和Cu则来自于研究区域周边的交通污染源,而Al和Mg则主要来自于地壳或土壤背景值.
  • 加载中
  • [1] Hu C W, Chao M R, Wu K Y, et al. Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan[J]. Atmospheric Environment, 2003, 37(20):2845-2852
    [2] [2] Li M, Hu S, Xiang J, et al., Characterization of fly ashes from two chinese municipal solid waste incinerators[J]. Energy & Fuels, 2003, 17(6):1487-1491
    [3] [3] Sakai S, Sawell S E, Chandler A J, et al. World trends in municipal solid waste management[J]. Waste Management, 1996, 16(5/6): 341-350
    [4] [4] Kogevinas M. Human health effects of dioxins: cancer, reproductive and endocrine system effects[J]. Apmis, 2001, 109(S103):S223-S232
    [5] [5] Mari M, Nadal M, Schuhmacher M, et al. Monitoring PCDD/Fs, PCBs and metals in the ambient air of an industrial area of Catalonia, Spain[J]. Chemosphere, 2008, 73(6):990-998
    [6] [6] Leung A O, Duzgoren-Aydin N S, Cheung K, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China[J]. Environmental Science & Technology, 2008, 42(7):2674-2680
    [7] [7] Bretzel F, Calderisi M. Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil[J]. Environ Monit Assess, 2011, 182(1/4):523-533
    [8] [8] Rimmer D L, Vizard C G, Pless-Mulloli T, et al. Metal contamination of urban soils in the vicinity of a municipal waste incinerator: One source among many[J]. Science of the Total Environment, 2006, 356(1):207-216
    [9] [9] Bache C A, Gutenmann W H, Rutzke M, et al. Concentrations of metals in grasses in the vicinity of a municipal refuse incinerator[J]. Archives of Environmental Contamination and Toxicology, 1991, 20(4):538-542
    [10] [10] Wróbel A, Rokita E, Maenhaut W. Transport of traffic-related aerosols in urban areas[J]. Science of the Total Environment, 2000, 257(2/3):199-211
    [11] [11] Bilos C, Colombo J C, Skorupka C N, et al. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina[J]. Environmental Pollution, 2001, 111(1):149-158
    [12] [12] Singh M, Jaques PA, Sioutas C. Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin[J]. Atmospheric Environment, 2002, 36(10):1675-1689
    [13] [13] Gao Y, Arimoto R, Duce R A, et al. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D4):3767-3777
    [14] [14] Gao Y, Nelson E D, Field M P, et al. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York-New Jersey harbor estuary[J]. Atmospheric Environment, 2002, 36(6):1077-1086
    [15] [15] Wang X, Sato T, Xing B. Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan[J]. Chemosphere, 2006, 65(11):2440-2448
    [16] [16] Kuo C Y, Wang J Y, Liu W T, et al. Evaluation of the vehicle contributions of metals to indoor environments[J]. J Expos Sci Environ Epidemiol, 2012, 22(5):489-495
    [17] [20] Güllü G, Dogăn G, Tuncel G. Atmospheric trace element and major ion concentrations over the eastern Mediterranean Sea: Identification of anthropogenic source regions[J]. Atmospheric Environment, 2005, 39(34):6376-6387
    [18] [21] Voutsa D, Samara C, Kouimtzis T, et al. Elemental composition of airborne particulate matter in the multi-impacted urban area of Thessaloniki, Greece[J]. Atmospheric Environment, 2002, 36(28):4453-4462
    [19] [23] Wang K S, Chiang K Y, Tsai C C, et al. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system[J]. Environment International, 2001, 26(4):257-263
    [20] [24] Bruder-Hubscher V, Lagarde F, Leroy M, et al. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash[J]. Analytica Chimica Acta, 2002, 451(2):285-295
    [21] [25] Santos R M, Mertens G, Salman M, et al. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching[J]. Journal of Environmental Management, 2013, 128:807-821
    [22] [26] Gunawardena J, Egodawatta P, Ayoko G A, et al. Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons[J]. Atmospheric Environment, 2012, 54:502-510
    [23] [27] Herngren L, Goonetilleke A, Ayoko G A, Analysis of heavy metals in road-deposited sediments[J]. Analytica Chimica Acta, 2006, 571(2):270-278
    [24] [28] Sartor J D, Boyd G B, Agardy F J, Water pollution aspects of street surface contaminants[J]. Journal (Water Pollution Control Federation), 1974:458-467
    [25] [29] Janssen N A, Van Mansom D F, Van Der Jagt K, et al. Mass concentration and elemental composition of airborne particulate matter at street and background locations[J]. Atmospheric Environment, 1997, 31(8):1185-1193
    [26] [30] Aslam J, Khan S A, Khan S H, Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates[J]. Journal of Saudi Chemical Society, 2011, 17(2013):315-319
  • 加载中
计量
  • 文章访问数:  1051
  • HTML全文浏览数:  991
  • PDF下载数:  432
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-12-09
  • 刊出日期:  2015-06-15
张海龙, 李祥平, 齐剑英, 陈永亨, 方建德. 广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究[J]. 环境化学, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
引用本文: 张海龙, 李祥平, 齐剑英, 陈永亨, 方建德. 广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究[J]. 环境化学, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
ZHANG Hailong, LI Xiangping, QI Jianying, CHEN Yongheng, FANG Jiande. Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator(MSWI) in Guangdong[J]. Environmental Chemistry, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904
Citation: ZHANG Hailong, LI Xiangping, QI Jianying, CHEN Yongheng, FANG Jiande. Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator(MSWI) in Guangdong[J]. Environmental Chemistry, 2015, 34(6): 1109-1115. doi: 10.7524/j.issn.0254-6108.2015.06.2014120904

广东某垃圾焚烧炉周边空气颗粒物中金属浓度特征及源解析研究

  • 1.  环境保护部华南环境科学研究所, 广州, 510655;
  • 2.  广州大学化学工程学院, 广州, 510006;
  • 3.  广州大学环境科学与工程学院, 广州, 510006
基金项目:

国家自然科学基金(41203061)

公益性科研专项计划课题(201509051)资助.

摘要: 以广东某垃圾焚烧炉为研究对象,应用富集因子法、主成分分析法对其周边环境空气中金属(Fe、Al、Mg、Cu、Zn、Mn、Ba、Pb、Cr、Ni、Bi和Cd)含量及来源进行分析.结果如下:研究区域环境空气中各金属含量(各点均值)(ngm-3)为:Fe (1092 3487) Al(9393126) Mg(7161339) Cu (63.4995) Zn (227427) Mn(162 291.1) Ba(61.4372) Pb(21.941.8) Cr(12.3 25.7) Ni (5.7015.5) Bi (0.701.22) Cd (0.420.82).相关分析和主成分分析发现,研究区域Fe与Ni、Cr、Mn、Ba主要来自于焚烧炉释放,Zn、Cd、Pb、Bi和Cu则来自于研究区域周边的交通污染源,而Al和Mg则主要来自于地壳或土壤背景值.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回