纳米MgO对斜生栅藻的毒性效应及致毒机理

吴明珠, 何梅琳, 邹山梅, 邓祥元, 王长海. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
引用本文: 吴明珠, 何梅琳, 邹山梅, 邓祥元, 王长海. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
WU Mingzhu, HE Meilin, ZOU Shanmei, DENG Xiangyuan, WANG Changhai. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
Citation: WU Mingzhu, HE Meilin, ZOU Shanmei, DENG Xiangyuan, WANG Changhai. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103

纳米MgO对斜生栅藻的毒性效应及致毒机理

  • 基金项目:

    江苏省自然科学基金(BK20140713)

    中国博士后科学基金(2013M531370,2014T70532)资助.

Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus

  • Fund Project:
  • 摘要: 为探究纳米氧化镁(MgO)对微藻的毒性效应及致毒机制, 以斜生栅藻(Scenedesmus obliquus)为实验材料, 测定了纳米MgO对斜生栅藻细胞形态、生长、叶绿素含量及SOD和POD酶活性的影响.结果表明, 低浓度的纳米MgO(>0.8 mg·L-1)即可对斜生栅藻的生长及叶绿素的合成有抑制作用, 说明纳米MgO对斜生栅藻具有明显的毒性.100 mg·L-1纳米MgO处理时, 完全抑制了栅藻的生长和叶绿素的合成, 藻细胞在4 d内死亡.通过亚甲基蓝还原法测定培养体系中活性氧(ROS)含量发现, 随着纳米MgO浓度的升高, ROS大量增加;且纳米MgO暴露条件下, POD酶活性相比于对照组显著增强, 但不同浓度纳米MgO处理组之间POD酶活性无明显差异.纳米MgO处理96 h后, 当其浓度高于0.8 mg·L-1时, SOD酶活性随浓度升高而降低, 表明长时间暴露于纳米MgO后, SOD酶活性受高浓度纳米MgO抑制, 而POD酶则作为主要的抗氧化酶清除产生的各种自由基.扫描电镜观察发现, 纳米MgO(>20 mg·L-1)处理时, 斜生栅藻细胞变形, 甚至裂解.纳米MgO发生团聚, 附着在栅藻细胞表面;团聚的纳米MgO对藻细胞鞭毛有缠绕作用, 使细胞聚集成团, 限制了藻细胞的游动, 并导致细胞间相互遮弊, 不利于藻细胞吸收光能.透射电镜观察发现, 纳米MgO没有进入藻细胞内部.通过测定纳米MgO解离出的Mg2+的含量和对藻细胞部分生理生化指标的影响发现, 其对藻细胞没有毒性效应.因此, 纳米MgO对斜生栅藻的致毒机理可归纳为:通过释放大量ROS对藻细胞产生氧化胁迫抑制其生长;高浓度的纳米MgO引起藻细胞的接触性物理损伤, 导致藻细胞质壁分离, 裂解;同时纳米MgO团聚并覆盖在藻细胞表面, 通过与藻细胞鞭毛的相互作用使细胞聚集成团, 影响细胞的正常游动及其对光能、营养物质的吸收利用和气体的交换.
  • 加载中
  • [1] Ko C H, Park S H, Jeon J K, et al. Upgrading of biofuel by the catalytic deoxygenation of biomass[J]. Korean Journal of Chemical Engineering, 2012, 29(12): 1657-1665
    [2] Lu Q, Zhang Z F, Dong C Q, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py-GC/MS study [J]. Energies, 2010, 3(11): 1805-1820
    [3] Shukla S K, Parashar G K, Mishra A P, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor[J]. Sensors and Actuators B-Chemical, 2004, 98(1): 5-11
    [4] Zhou G J, Peng F Q, Zhang L J, et al. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus[J]. Environ Sci Pollut Res Int, 2011, 19(7): 2918-2929
    [5] Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Sci Total Environ, 2009, 407(4): 1461-1468
    [6] Ottofuelling S, Kammer F V D, Hofmann T. Nanoparticles in the aquatic environment—aggregation behaviour of TiO2 nanoparticles studied in a simplified aqueous test matrix (SAM) [J]. Geophys Res, 2007, 9: 08876
    [7] Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp.[J]. J Nanopart Res, 2011, 13:3287-3299
    [8] 成婕, 谢尔瓦妮古丽.苏来曼, 邓祥元, 等. 纳米二氧化钛对斜生栅藻的毒性效应研究[J]. 江西农业大学学报, 2014, 36(1): 238-242
    [9] 李然忠, 郑玉峰, 王月丹. 纳米MgO、ZnO和Al2O3材料的生物相容性评价[D]. 北京大学硕士学位论文, 2008
    [10] Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids[J]. Environmental Science and Pollution Research-International, 2006, 13(4): 225-232
    [11] Radix P, Leonard M, Papantoniou C, et al. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals[J]. Ecotoxicol Environ Saf, 2000, 47(2): 186-194
    [12] Huang Y T, Su C P. High lipid content and productivity of microalgae cultivating under elevated carbon dioxide[J]. International Journal of Environmental Science and Technology, 2013, 11(3):703-710
    [13] OECD guidelines for testing of chemicals. Test 201: Algal growth inhibition test[R]. 1984
    [14] Lightenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1955, 11:591-592
    [15] Kang N K, Lee B, Choi G-G, et al. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles[J]. Korean Journal of Chemical Engineering, 2014, 31(5):861-867
    [16] Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. J Appl Toxicol, 2009, 29(1): 69-78
    [17] 石磊, 刘伟才, 何红燕, 等. 不同培养液中3种藓类光合色素含量比较[J]. 山西农业生物学报, 2009, 28(2): 175-179
    [18] 钟秋, 何桢, 戴安琪, 等. 纳米二氧化铈对斜生栅藻的毒性研究[J]. 农业环境科学学报, 2012, 31(2): 299-305
    [19] 李锋民, 赵薇, 李媛媛, 等. 纳米TiO2对短裸甲藻的毒性效应[J]. 环境科学, 2012, 33(1): 233-238
    [20] Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983
    [21] Patra P, Roy S, Sarkar S, et al. Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent[J]. Applied Nanoscience, 2014, DOI 10.1007/s13204-014-0389-z
    [22] Cervantes-Cervantes M P, Calderón-Salinas J V, Albores A, et al. Copper increases the damage to DNA and proteins caused by reactive oxygen species[J]. Biol Trace Elem Res, 2005, 103(20):229-248
    [23] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761): 622-627
    [24] Chen J, Ma J, Cao W, et al. Sensitivity of green and blue-green algae to methyl tert-butyl ether[J]. Journal of Environmental Sciences, 2009, 21(4): 514-519
    [25] Loprasert S, Vattanaviboon P, Praituan W, et al. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas [J]. Gene, 1996, 179(1): 33-37
    [26] 刘晓娟, 李爱芬, 段舜山. UV-B辐射对绿色巴夫藻生长及抗氧化酶的影响[J]. 海洋科学, 2007, 31(4): 48-52
    [27] Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J]. Chemosphere, 2008, 71(7): 1308-1316
    [28] Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga(Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environ Sci Technol, 2007, 41(24): 8484-8490
    [29] Hu C, Liu X, Li X, et al. Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants[J]. Environ Sci Pollut Res Int, 2014, 21(1): 732-739
    [30] 王珊, 赵树欣, 魏长龙, 等. 缺镁胁迫对普通小球藻光合生理及油脂积累的影响[J]. 环境科学, 2014, 35(4): 1462-1467
  • 加载中
计量
  • 文章访问数:  1296
  • HTML全文浏览数:  1196
  • PDF下载数:  630
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-12-31
  • 刊出日期:  2015-07-15
吴明珠, 何梅琳, 邹山梅, 邓祥元, 王长海. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
引用本文: 吴明珠, 何梅琳, 邹山梅, 邓祥元, 王长海. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
WU Mingzhu, HE Meilin, ZOU Shanmei, DENG Xiangyuan, WANG Changhai. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103
Citation: WU Mingzhu, HE Meilin, ZOU Shanmei, DENG Xiangyuan, WANG Changhai. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7): 1259-1267. doi: 10.7524/j.issn.0254-6108.2015.07.2014123103

纳米MgO对斜生栅藻的毒性效应及致毒机理

  • 1. 南京农业大学资源与环境科学学院, 南京, 210095
基金项目:

江苏省自然科学基金(BK20140713)

中国博士后科学基金(2013M531370,2014T70532)资助.

摘要: 为探究纳米氧化镁(MgO)对微藻的毒性效应及致毒机制, 以斜生栅藻(Scenedesmus obliquus)为实验材料, 测定了纳米MgO对斜生栅藻细胞形态、生长、叶绿素含量及SOD和POD酶活性的影响.结果表明, 低浓度的纳米MgO(>0.8 mg·L-1)即可对斜生栅藻的生长及叶绿素的合成有抑制作用, 说明纳米MgO对斜生栅藻具有明显的毒性.100 mg·L-1纳米MgO处理时, 完全抑制了栅藻的生长和叶绿素的合成, 藻细胞在4 d内死亡.通过亚甲基蓝还原法测定培养体系中活性氧(ROS)含量发现, 随着纳米MgO浓度的升高, ROS大量增加;且纳米MgO暴露条件下, POD酶活性相比于对照组显著增强, 但不同浓度纳米MgO处理组之间POD酶活性无明显差异.纳米MgO处理96 h后, 当其浓度高于0.8 mg·L-1时, SOD酶活性随浓度升高而降低, 表明长时间暴露于纳米MgO后, SOD酶活性受高浓度纳米MgO抑制, 而POD酶则作为主要的抗氧化酶清除产生的各种自由基.扫描电镜观察发现, 纳米MgO(>20 mg·L-1)处理时, 斜生栅藻细胞变形, 甚至裂解.纳米MgO发生团聚, 附着在栅藻细胞表面;团聚的纳米MgO对藻细胞鞭毛有缠绕作用, 使细胞聚集成团, 限制了藻细胞的游动, 并导致细胞间相互遮弊, 不利于藻细胞吸收光能.透射电镜观察发现, 纳米MgO没有进入藻细胞内部.通过测定纳米MgO解离出的Mg2+的含量和对藻细胞部分生理生化指标的影响发现, 其对藻细胞没有毒性效应.因此, 纳米MgO对斜生栅藻的致毒机理可归纳为:通过释放大量ROS对藻细胞产生氧化胁迫抑制其生长;高浓度的纳米MgO引起藻细胞的接触性物理损伤, 导致藻细胞质壁分离, 裂解;同时纳米MgO团聚并覆盖在藻细胞表面, 通过与藻细胞鞭毛的相互作用使细胞聚集成团, 影响细胞的正常游动及其对光能、营养物质的吸收利用和气体的交换.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回