[1]
|
Ko C H, Park S H, Jeon J K, et al. Upgrading of biofuel by the catalytic deoxygenation of biomass[J]. Korean Journal of Chemical Engineering, 2012, 29(12): 1657-1665
|
[2]
|
Lu Q, Zhang Z F, Dong C Q, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py-GC/MS study [J]. Energies, 2010, 3(11): 1805-1820
|
[3]
|
Shukla S K, Parashar G K, Mishra A P, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor[J]. Sensors and Actuators B-Chemical, 2004, 98(1): 5-11
|
[4]
|
Zhou G J, Peng F Q, Zhang L J, et al. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus[J]. Environ Sci Pollut Res Int, 2011, 19(7): 2918-2929
|
[5]
|
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Sci Total Environ, 2009, 407(4): 1461-1468
|
[6]
|
Ottofuelling S, Kammer F V D, Hofmann T. Nanoparticles in the aquatic environment—aggregation behaviour of TiO2 nanoparticles studied in a simplified aqueous test matrix (SAM) [J]. Geophys Res, 2007, 9: 08876
|
[7]
|
Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp.[J]. J Nanopart Res, 2011, 13:3287-3299
|
[8]
|
成婕, 谢尔瓦妮古丽.苏来曼, 邓祥元, 等. 纳米二氧化钛对斜生栅藻的毒性效应研究[J]. 江西农业大学学报, 2014, 36(1): 238-242
|
[9]
|
李然忠, 郑玉峰, 王月丹. 纳米MgO、ZnO和Al2O3材料的生物相容性评价[D]. 北京大学硕士学位论文, 2008
|
[10]
|
Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids[J]. Environmental Science and Pollution Research-International, 2006, 13(4): 225-232
|
[11]
|
Radix P, Leonard M, Papantoniou C, et al. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals[J]. Ecotoxicol Environ Saf, 2000, 47(2): 186-194
|
[12]
|
Huang Y T, Su C P. High lipid content and productivity of microalgae cultivating under elevated carbon dioxide[J]. International Journal of Environmental Science and Technology, 2013, 11(3):703-710
|
[13]
|
OECD guidelines for testing of chemicals. Test 201: Algal growth inhibition test[R]. 1984
|
[14]
|
Lightenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1955, 11:591-592
|
[15]
|
Kang N K, Lee B, Choi G-G, et al. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles[J]. Korean Journal of Chemical Engineering, 2014, 31(5):861-867
|
[16]
|
Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. J Appl Toxicol, 2009, 29(1): 69-78
|
[17]
|
石磊, 刘伟才, 何红燕, 等. 不同培养液中3种藓类光合色素含量比较[J]. 山西农业生物学报, 2009, 28(2): 175-179
|
[18]
|
钟秋, 何桢, 戴安琪, 等. 纳米二氧化铈对斜生栅藻的毒性研究[J]. 农业环境科学学报, 2012, 31(2): 299-305
|
[19]
|
李锋民, 赵薇, 李媛媛, 等. 纳米TiO2对短裸甲藻的毒性效应[J]. 环境科学, 2012, 33(1): 233-238
|
[20]
|
Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983
|
[21]
|
Patra P, Roy S, Sarkar S, et al. Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent[J]. Applied Nanoscience, 2014, DOI 10.1007/s13204-014-0389-z
|
[22]
|
Cervantes-Cervantes M P, Calderón-Salinas J V, Albores A, et al. Copper increases the damage to DNA and proteins caused by reactive oxygen species[J]. Biol Trace Elem Res, 2005, 103(20):229-248
|
[23]
|
Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761): 622-627
|
[24]
|
Chen J, Ma J, Cao W, et al. Sensitivity of green and blue-green algae to methyl tert-butyl ether[J]. Journal of Environmental Sciences, 2009, 21(4): 514-519
|
[25]
|
Loprasert S, Vattanaviboon P, Praituan W, et al. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas [J]. Gene, 1996, 179(1): 33-37
|
[26]
|
刘晓娟, 李爱芬, 段舜山. UV-B辐射对绿色巴夫藻生长及抗氧化酶的影响[J]. 海洋科学, 2007, 31(4): 48-52
|
[27]
|
Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J]. Chemosphere, 2008, 71(7): 1308-1316
|
[28]
|
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga(Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environ Sci Technol, 2007, 41(24): 8484-8490
|
[29]
|
Hu C, Liu X, Li X, et al. Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants[J]. Environ Sci Pollut Res Int, 2014, 21(1): 732-739
|
[30]
|
王珊, 赵树欣, 魏长龙, 等. 缺镁胁迫对普通小球藻光合生理及油脂积累的影响[J]. 环境科学, 2014, 35(4): 1462-1467
|