基于粒径谱分布的南京市区大气颗粒物来源解析

王振, 马嫣, 郑军, 李时政, 王荔, 张亚飞. 基于粒径谱分布的南京市区大气颗粒物来源解析[J]. 环境化学, 2015, 34(9): 1619-1626. doi: 10.7524/j.issn.0254-6108.2015.09.2015020303
引用本文: 王振, 马嫣, 郑军, 李时政, 王荔, 张亚飞. 基于粒径谱分布的南京市区大气颗粒物来源解析[J]. 环境化学, 2015, 34(9): 1619-1626. doi: 10.7524/j.issn.0254-6108.2015.09.2015020303
WANG Zhen, MA Yan, ZHENG Jun, LI Shizheng, WANG Li, ZHANG Yafei. Source apportionment of aerosols in urban Nanjing based on particle size distribution[J]. Environmental Chemistry, 2015, 34(9): 1619-1626. doi: 10.7524/j.issn.0254-6108.2015.09.2015020303
Citation: WANG Zhen, MA Yan, ZHENG Jun, LI Shizheng, WANG Li, ZHANG Yafei. Source apportionment of aerosols in urban Nanjing based on particle size distribution[J]. Environmental Chemistry, 2015, 34(9): 1619-1626. doi: 10.7524/j.issn.0254-6108.2015.09.2015020303

基于粒径谱分布的南京市区大气颗粒物来源解析

  • 基金项目:

    国家自然科学基金(21377059,41275142)

    江苏省自然科学基金(BK2012861)

    江苏省六大人才高峰项目(JNHB-006)资助.

Source apportionment of aerosols in urban Nanjing based on particle size distribution

  • Fund Project:
  • 摘要: 2013年8月8日—2013年8月29日期间,于南京市气象局采用扫描电迁移率粒径谱仪(SMPS)连续监测颗粒物粒径谱分布.运用正交矩阵因子分析法(PMF)分析得出了观测期间气溶胶粒径分布的4个源.结合痕量气体数据(NOx)、气溶胶光吸收系数(Babs781)和颗粒物化学成分(SO42-、NO3-)确认出4个源,即近处交通排放源、远处交通排放源、混合燃烧排放源和二次气溶胶源.同时基于气象数据(风向和风速),通过条件概率函数(CPF)判断出4个源的方位.近、远处交通源与NOx的日变化规律相似,混合燃烧源与Babs781具有较为一致的变化趋势,而二次气溶胶源与SO42-和NO3-浓度之和有较好的相关性.4个源的贡献率依次分别为14%、24%、37%和25%,表明混合燃烧排放的相对贡献最大.
  • 加载中
  • [1] Delfino R J,Sioutas C,Malik S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health[J]. Environmental Health Perspectives,2005,113:934-946
    [2] Wichmann H E,Spix C,Tuch T. Daily mortality and fine and ultrafine particles in Erfurt, Germany, Part A:Role of particle number and particle mass[J]. Health Effects Institute Research Report,2000,98:5-86
    [3] Oberdorster G,Oberdorster E,Oberdorster J. Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives,2005,113:823-839
    [4] Kumar P,Robins A,Vardoulakis S,et al. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls[J]. Atmosphere Environment,2010,44:5035-5052
    [5] Kulmala M,Vehkamäki H,Petäjä T,et al. Formation and growth rates of ultrafine atmospheric particles:A review of observations[J]. JAerosol Science,2004,35:143-176
    [6] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications[J].Atmosphere Environment,2007,41:2183-2201
    [7] Zhou L M,Kim E,Hopke P K,et al. Advanced factor analysis on Pittsburgh particle size-distribution data[J]. Aerosol Science and Technology,2004,38:118-132
    [8] Wu Z J,Hu M,Lin P,et al. Particle number size distribution in the urban atmosphere of Beijing, China[J]. Atmosphere Environment,2008, 42:7967-7980
    [9] Paatero P. Least square formulation of robust nonnegative factor analysis[J]. ChemometrIntell Lab Syst,1997,37:23-35
    [10] Lee E,Chan C K,Paatero P. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong[J]. Atmosphere Environment,1999,33:3201-3212
    [11] Ramadan Z,Song X H,Hopke P K. Identification of sources of Phoenix aerosol by positive matrix factorization[J]. Journal of Air & Waste Manage Association,2000,50:1308-1320
    [12] 李秀,张勇,张家泉,等.黄石城区夏季大气PM10/PM2.5中元素特征分析[J].环境化学,2014,33(2):357-358
    [13] Kim E,Hopke P K,Edgerton E S. Source identification of Atlanta aerosol by positive matrix factorization[J]. Journal of Air & Waste Manage Association,2003,53:731-739
    [14] 宋宇,唐孝炎,方晨,等.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J].环境科学,2002,23(6):11-16
    [15] Kim E,Hopke P K,Larson T V,et al. Analysis of ambient particle size distributions using Unmix and positive matrix factorization[J]. Environ Sci Technol,2004,38:202-209
    [16] Zhou L M,Kim E,Hopke P K,et al. Mining airborne particulate size distribution data by positive matrix factorization[J]. J Geophys Res,2005,110(7):1-15
    [17] Ogulei D,Hopke P K,Zhou L M,et al. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data[J]. Atmosphere Environment,2006,40(S2):396-410
    [18] Song Y,Dai W,Shao M,et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China[J]. Environ Pollut,2008,156:174-183
    [19] Lanz V A,Hueglin C,Buchmann B,et al. Receptor modeling of C2-C7 hydrocarbon sources at an urban background site in Zurich, Switzerland:Changes between 1993-1994 and 2005-2006[J]. Atmos Chem Phys,2008,8:2313-2332
    [20] Paatero P,Tapper U.Positive matrix factorization-a nonnegative factor model with optimal utilization of error-estimates of data values[J]. Environmetrics,,1994,5:111-116
    [21] EPA:Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide[S]. Washington,DC,2008
    [22] Paatero P,Hopke P K,Song X H,et al. Understanding and controlling rotations in factor analytic models[J]. ChemomIntell Lab Syst,2002,60:253-264
    [23] Kim E,Hopke P K. Comparison between conditional probability function and nonparametric regression for fine particle source directions[J]. Atmosphere Environment,2004,38:4667-4673
    [24] 杨辉,朱斌,高晋辉,等.南京市北郊夏季挥发性有机物的源解析[J].环境科学,2013,34(12):4519-4528
    [25] Wang Z B,Hu M,Wu Z J,et al.Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing[J].Atmos Chem Phys,2013,13:10159-10170
    [26] Ulbrich I M,Canagaratna M R,Zhang Q,et al. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data[J]. Atmos Chem Phys,2009,9:2891-2918
    [27] Wehner B,Birmili W,Gnauk T,et al. Particle number size distributions in a street canyon and their transformation into the urban-air background:Measurements and a simple model study[J]. Atmosphere Environment,2002,36:2215-2223
    [28] Virtanen A,Rönkkö T,Kannosto J,et al. Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki[J]. Atmos Chem Phys,2006,6:2411-2421
    [29] Gramotnev G,Ristovski Z. Experimental investigation of ultra-fine particle size distribution near a busy road[J]. Atmosphere Environment,2004,38:1767-1776
    [30] Yue W,Stolzel M,Cyrys J,et al. Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany[J]. Sci Total Environ,2008,398:133-144
    [31] Flowers B A,Dubey M K,Mazzoleni C.Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island:3-laser photoacoustic spectrometer, particle sizing, and filter analysis[J]. Atmos Chem Phys,2010,10:10387-10398
    [32] Yi H H,Hao J M,Duan L,et al. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China[J]. Journal of Air & Waste Manage Association,2006,56:1243-1251
    [33] Li X,Duan L,Wang S,et al. Emission characteristics of particulate matter from rural household biofuel combustion in China[J]. Energ Fuel,2007,21:845-851
  • 加载中
计量
  • 文章访问数:  1240
  • HTML全文浏览数:  1156
  • PDF下载数:  1086
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-03
  • 刊出日期:  2015-09-15

基于粒径谱分布的南京市区大气颗粒物来源解析

  • 1. 南京信息工程大学环境科学与工程学院;江苏省大气环境监测与污染控制高技术研究重点实验室, 南京, 210044
基金项目:

国家自然科学基金(21377059,41275142)

江苏省自然科学基金(BK2012861)

江苏省六大人才高峰项目(JNHB-006)资助.

摘要: 2013年8月8日—2013年8月29日期间,于南京市气象局采用扫描电迁移率粒径谱仪(SMPS)连续监测颗粒物粒径谱分布.运用正交矩阵因子分析法(PMF)分析得出了观测期间气溶胶粒径分布的4个源.结合痕量气体数据(NOx)、气溶胶光吸收系数(Babs781)和颗粒物化学成分(SO42-、NO3-)确认出4个源,即近处交通排放源、远处交通排放源、混合燃烧排放源和二次气溶胶源.同时基于气象数据(风向和风速),通过条件概率函数(CPF)判断出4个源的方位.近、远处交通源与NOx的日变化规律相似,混合燃烧源与Babs781具有较为一致的变化趋势,而二次气溶胶源与SO42-和NO3-浓度之和有较好的相关性.4个源的贡献率依次分别为14%、24%、37%和25%,表明混合燃烧排放的相对贡献最大.

English Abstract

参考文献 (33)

目录

/

返回文章
返回