芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性

吴晴雯, 孟梁, 张志豪, 罗启仕. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
引用本文: 吴晴雯, 孟梁, 张志豪, 罗启仕. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
WU Qingwen, MENG Liang, ZHANG Zhihao, LUO Qishi. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environmental Chemistry, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
Citation: WU Qingwen, MENG Liang, ZHANG Zhihao, LUO Qishi. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environmental Chemistry, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108

芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性

  • 基金项目:

    上海市自然科学基金(13ZR1460200)

    国家自然科学基金(41401357)

    国家高技术研究发展计划(SS2013AA062608)

    上海市环保局青年基金(沪环科2014-105)

    上海市环境科学研究院科技创新项目(CX201407)资助.

Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions

  • Fund Project:
  • 摘要: 本实验选用由芦苇秸秆制备的生物炭,通过研究吸附等温线、吸附动力学以及生物炭投加量和溶液pH对生物炭吸附Ni2+的影响,以确定其对水体中Ni2+的吸附特性.结果表明,Ni2+初始浓度在0.5—12 mg·L-1范围内,Langmuir模型能很好地描述生物炭对Ni2+的等温吸附规律,其理论饱和吸附量为12.10 mg·g-1,与实际饱和吸附量11.93 mg·g-1相近.生物炭对Ni2+的吸附动力学过程符合准二级动力学模型,通过颗粒内扩散方程可得具体吸附过程由膜扩散和内扩散共同控制.随投加量增加,生物炭对Ni2+的吸附量下降,而去除率则上升,当投加量 > 30 mg时,Ni2+的去除率接近100%.溶液pH值在1—12范围内,Ni2+的去除率随pH值的升高而增加,当pH > 10时,Ni2+的去除率同样接近100%.
  • 加载中
  • [1] Bhatnagar A, Minocha A K. Biosorption optimization of nickel removal from water using Punica granatum peel waste[J]. Colloids and Surfaces B:Biointerfaces, 2010, 76 (2):544-548
    [2] 王韬, 李鑫钢, 杜启云. 含重金属离子废水治理技术的研究进展[J]. 化工环保, 2008, 28 (4):323-326
    [3] Runtti H, Tuomikoskia S, Kangas T, et al. Chemically activated carbon residue from biomass gasification as asorbent for iron(Ⅱ), copper(Ⅱ) and nickel(Ⅱ) ions[J]. Journal of Water Process Engineering, 2014, 4:12-24
    [4] Abollino O, Aceto M, Malandrino M, et al. Adsorption of heavy metals on na-montmorillonite:Effect of pH and organic substances[J]. Water Research, 2003, 37 (7):1619-1627
    [5] 郭文娟, 梁学峰, 林大松, 等. 土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J]. 环境科学, 2013, 34 (9):3716-3721
    [6] 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd (Ⅱ) 的吸附机理研究[J]. 农业环境科学学报, 2012, 31 (11):2277-2283
    [7] 潘经健, 姜军, 徐仁扣, 等. Fe(Ⅲ)改性生物质炭对水相Cr(Ⅵ)的吸附试验[J]. 生态与农村环境学报, 2014, 30 (4):500-504
    [8] 黄色燕, 刘云凤, 曹威, 等. 改性稻草对Cr (Ⅵ) 的吸附动力学[J]. 环境化学, 2013, 32 (2):240-248
    [9] Sudha R, Srinivasan K, Premkumar P. Removal of nickel(Ⅱ) from aqueous solution using Citrus Limettioides peel and seed carbon[J]. Ecotoxicology and Environmental Safety, 2015, 117:115-123
    [10] Sočo E, Kalembkiewicz J. Adsorption of nickel(Ⅱ) and copper(Ⅱ) ions from aqueous solution by coal fly ash[J]. Journal of Environmental Chemical Engineering, 2013, 1:581-588
    [11] Sprynskyy M, Buszewski B, Terzyk A P, et al. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite[J]. Journal of Colloid and Interface Science, 2006, 304:21-28
    [12] Vieira M G A, Almeida Neto A F, Gimenes M L, et al. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay[J]. Journal of Hazardous Materials, 2010, 177 (1-3):362-371
    [13] Annadurai G, Juang R S, Lee D J. Adsorption of heavy metals from water using banana and orange peels[J]. Water Science & Technology, 2002, 47 (1):185-190
    [14] Al-Rub F A, Kandah M, Aldabaibeh N. Nickel removal from aqueous solutions using sheep manure wastes[J]. Engineering in Life Sciences, 2002, 2 (4):111-116
    [15] Argun M E, Dursun S, Gür K, et al. Nickel adsorption on the modified pine tree materials[J]. Environmental Technology, 2005, 26:479-487
    [16] Kiliç M, Kirbiyik Ç, Çepelioğullar Ö, et al. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 2013, 283:856-862
    [17] Srivastava V C, Mall I D, Mishra I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto baggase fly ash[J]. Waste Management, 2006, 117:79-91
    [18] Lata H, Garg V K, Gupta R K. Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus[J]. Journal of Hazardous Materials, 2008, 157 (2-3):503-509
    [19] 周尊隆, 卢媛, 孙红文. 菲在不同性质黑炭上的吸附动力学和等温线研究[J]. 农业环境科学学报, 2010, 29 (3):476-480
    [20] Ho Y S, Mckay G. A. Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Transactions of the Institution of Chemical Engineers, 1998, 76 (4):332-340
    [21] 安增莉, 侯艳伟, 蔡超, 等, 水稻秸秆生物炭对Pb (Ⅱ) 的吸附特性[J]. 环境化学, 2011, 30 (11):1851-1857
    [22] Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963, 89 (2):31-60
    [23] 林雪原, 荆延德, 巩晨等. 生物炭吸附重金属的研究进展[J]. 环境污染与防治, 2014, 36 (5):83-87
    [24] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30 (4):673-701
    [25] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel (Ⅱ) from aqueous solution onto activated carbon prepared from coir pith[J]. Separation and Purification Technology, 2001, 24 (3):497-505
    [26] Ghasemi M, Khosroshahy M Z, Abbasabadi A B, et al. Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with tetraethylenepentamine and its adsorption behavior toward Ni (Ⅱ) in aqueous solution:kinetic, equilibrium and thermodynamic studies[J]. Powder Technology, 2015, 274:362-371
    [27] 李力, 刘娅, 陆宇超, 等, 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 2011, 30 (8):1411-1421
  • 加载中
计量
  • 文章访问数:  1945
  • HTML全文浏览数:  1815
  • PDF下载数:  837
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-11
  • 刊出日期:  2015-09-15
吴晴雯, 孟梁, 张志豪, 罗启仕. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
引用本文: 吴晴雯, 孟梁, 张志豪, 罗启仕. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
WU Qingwen, MENG Liang, ZHANG Zhihao, LUO Qishi. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environmental Chemistry, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
Citation: WU Qingwen, MENG Liang, ZHANG Zhihao, LUO Qishi. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environmental Chemistry, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108

芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性

  • 1.  华东理工大学资源与环境工程学院, 上海, 200237;
  • 2.  上海市环境科学研究院, 上海, 200233;
  • 3.  华东理工大学中德工学院, 上海, 200237
基金项目:

上海市自然科学基金(13ZR1460200)

国家自然科学基金(41401357)

国家高技术研究发展计划(SS2013AA062608)

上海市环保局青年基金(沪环科2014-105)

上海市环境科学研究院科技创新项目(CX201407)资助.

摘要: 本实验选用由芦苇秸秆制备的生物炭,通过研究吸附等温线、吸附动力学以及生物炭投加量和溶液pH对生物炭吸附Ni2+的影响,以确定其对水体中Ni2+的吸附特性.结果表明,Ni2+初始浓度在0.5—12 mg·L-1范围内,Langmuir模型能很好地描述生物炭对Ni2+的等温吸附规律,其理论饱和吸附量为12.10 mg·g-1,与实际饱和吸附量11.93 mg·g-1相近.生物炭对Ni2+的吸附动力学过程符合准二级动力学模型,通过颗粒内扩散方程可得具体吸附过程由膜扩散和内扩散共同控制.随投加量增加,生物炭对Ni2+的吸附量下降,而去除率则上升,当投加量 > 30 mg时,Ni2+的去除率接近100%.溶液pH值在1—12范围内,Ni2+的去除率随pH值的升高而增加,当pH > 10时,Ni2+的去除率同样接近100%.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回