焦化废水污染指标的相关性分析

黄源凯, 韦朝海, 吴超飞, 吴海珍. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704
引用本文: 黄源凯, 韦朝海, 吴超飞, 吴海珍. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704
HUANG Yuankai, WEI Chaohai, WU Chaofei, WU Haizhen. The correlation analysis of pollution indexes in coking wastewater[J]. Environmental Chemistry, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704
Citation: HUANG Yuankai, WEI Chaohai, WU Chaofei, WU Haizhen. The correlation analysis of pollution indexes in coking wastewater[J]. Environmental Chemistry, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704

焦化废水污染指标的相关性分析

  • 基金项目:

    国家自然科学基金(51278199,21377040)

    广东省教育厅学科建设专项资金(2013CXZDA004)资助.

The correlation analysis of pollution indexes in coking wastewater

  • Fund Project:
  • 摘要: 焦化废水包含不同形态与化合态的化合物.废水中各类化合物在降解过程中的变化对污染风险的判断和水处理工艺的选择都有很大的影响.以74篇国内外有关焦化废水生物处理的文献作为统计背景值,结合课题组近10年的基础研究与工程实践,分析存在于焦化废水中污染指标之间的相互依赖关系,解析COD、TN、色度的构成,评价我国目前的执行标准在指导生产方面的合理性.研究结果发现,不同企业焦化废水的水质存在较大的差异,所有焦化厂普遍忽视TP、苯、PAHs、苯并(a)芘指标的监控,COD和油类的最终出水达标率仅为16.67%和28.57%.焦化废水原水中的硫氰化物、氟离子和色度的平均浓度分别为259.37、135.66 mg·L-1和713.75倍,检出率很高,建议作为控制性指标加以关注.在目前统计到的文献中,构成焦化废水COD的组分为:挥发酚(47.28%)、硫氰化物(19.48%)、硫化物(6.81%)、氰化物(2.41%)、油类和有机胺类等(24.02%);构成TN的组分为:氨氮(48.49%)、有机氮(35.89%)、硫氰化物(12.27%)、氰化物(2.35%)、硝态氮和亚硝态氮(1%);构成色度的主要组分有带显色基团的有机物、显色离子团和硫化物等.构成COD、TN、色度等3项指标的化合物几乎涵盖了焦化废水中的所有组分.综上所述,可将焦化废水指标归纳为COD类、TN类和色度等3大类,通过归一化管理实现简化的目标.
  • 加载中
  • [1] Zhou X, Li Y, Zhao Y, et al. Pilot-scale anaerobic/anoxic/oxic/oxic biofilm process treating coking wastewater[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(2):305-310
    [2] Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3):915-921
    [3] Wang W, Han H, Yuan M, et al. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal[J]. Bioresource Technology, 2011, 102(9):5454-5460
    [4] 任源, 韦朝海, 吴超飞, 等. 生物流化床 A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J]. 环境科学学报, 2006, 26(11):1785-1791
    [5] Wei X, Zhang Z, Fan Q, et al. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity[J]. Journal of Hazardous Materials, 2012, 239:135-141
    [6] Wang Z, Xu X, Chen J, et al. Treatment of Lurgi coal gasification wastewater in pre-denitrification anaerobic and aerobic biofilm process[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):899-905
    [7] Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6) 997-1005
    [8] Lai P, Zhao H, Ye Z, et al. Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms[J]. Process Biochemistry, 2008, 43(3):229-237
    [9] 张万辉, 韦朝海, 吴超飞, 等. 焦化废水中有机物的识别, 污染特性及其在废水处理过程中的降解[J]. 环境化学, 2012, 31(10):1480-1486
    [10] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014, 34(9):2190-2198
    [11] Jeong Y S, Chung J S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers[J]. Process Biochemistry, 2006, 41(3):701-707
    [12] 郑纬元, 张新喜. A2/O2工艺处理焦化废水的工程应用[J]. 工业用水与废水, 2007, 38(2):74-76
    [13] 郭金华. A2/O法处理焦化废水[J]. 工业水处理, 2004, 24(9):65-67
    [14] 巴雅尔, 李子富, 张扬. A/O2法在大型焦化废水处理系统中的应用[J]. 工业水处理, 2012, 32(11):87-89
    [15] 曾高. AA/O法在焦化废水处理上的应用[J]. 湖南冶金, 2003, 31(3):39-43
    [16] 马昕, 吴云生, 张涛, 等. O1/A/O2工艺处理高浓度焦化废水[J]. 工业水处理, 2012, 32(2):89-92
    [17] 钱易, 张辉明. 焦化废水中难降解有机物去除的研究[J]. 环境科学研究, 1992, 5(5):1-9
    [18] 欧阳曙光, 邹永红, 王光华, 等. 应用 A/A/O 工艺改造焦化厂废水处理站[J]. 广州化工, 2012, 40(1):98-100
    [19] 黄会静, 韦朝海, 吴超飞, 等. 焦化废水生物处理 A/O/H/O 工艺中氰化物的去除特性[J]. 化工进展, 2011, 30(5):1141-1145
    [20] 任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007, 27(7):1094-1100
    [21] 韦朝海, 贺明和, 吴超飞, 等. 生物三相流化床 A/O2组合工艺在焦化废水处理中的工程应用[J]. 环境科学学报, 2007, 27(7):1107-1112
    [22] Rong Q, Kun Y, YU Z. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. Journal of Environmental Sciences, 2007, 19(2):153-159
    [23] Zhu S, Cheng J. The influence of anoxia design and change aerations time on the treatment from coke plant wastewater[J]. Journal of Coal Science and Engineering (China), 2010, 16(2):182-187
    [24] Yang W, Li X, Pan B, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Research, 2013, 47(13):4730-4738
    [25] Wang Z, Xu X, Gong Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235:78-84
    [26] Maranon E, Vazquez I, Rodriguez J, et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresource Technology, 2008, 99(10):4192-4198
    [27] Zhao W T, Shen Y X, Xiao K, et al. Fouling characteristics in a membrane bioreactor coupled with anaerobic-anoxic-oxic process for coke wastewater treatment[J]. Bioresource Technology, 2010, 101(11):3876-3883
    [28] Zhang M, Tay J H, Qian Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Research, 1998, 32(2):519-527
    [29] Chakraborty S, Veeramani H. Anaerobic-anoxic-aerobic sequential degradation of synthetic wastewaters[J]. Applied Biochemistry and Biotechnology, 2002, 102(1-6):443-451
    [30] 王纪军. A2/O 工艺处理焦化废水工程实例[J]. 中国环保产业, 2006 (3):14-16
    [31] 李柳, 李立敏, 徐军富. OAO工艺应用高效优势菌处理焦化废水的中试[J]. 燃料与化工, 2006, 37(5):37-40
    [32] 朱丽娜, 马号明, 李玉盘, 等. 邯钢焦化厂污染物控制措施[J]. 河北冶金, 2006 (2):60-62
    [33] 冯书辉, 王光华, 刘刚. AAO工艺在焦化废水处理中的应用与改进[J]. 燃料与化工, 2006, 37(3):46-48
    [34] 陈长松, 李天增, 张宝林, 等. A/O 工艺处理焦化废水的工程实践[J]. 环境科学与技术, 2006, 29(10):85-87
    [35] 丁淑琴, 王林平. 生化处理技术治理焦化废水的实践[J]. 中国有色冶金, 2006, 3:48-51
    [36] 杨平, 王彬, 石炎福, 等. 生物流化床 A-A-O 工艺处理焦化废水中试研究[J]. 化工学报, 2002, 53(10):1085-1088
    [37] 李捍东, 凌海波, 王强, 等. 投菌法应用于 A2O 工艺处理焦化废水的中试研究[J]. 环境工程, 2006, 23(5):21-24
    [38] Vazquez I, Rodriguez-Iglesias J, Maranon E, et al. Removal of residual phenols from coke wastewater by adsorption[J]. Journal of Hazardous Materials, 2007, 147(1):395-400
    [39] Chen T, Huang X, Pan M, et al. Treatment of coking wastewater by using manganese and magnesium ores[J]. Journal of Hazardous Materials, 2009, 168(2):843-847
    [40] Jin X, Li E, Lu S, et al. Coking wastewater treatment for industrial reuse purpose:Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8):1565-1574
    [41] Zhu N, Li H, Li G, et al. Coking wastewater increases micronucleus frequency in mouse in vivo via oxidative stress[J]. Journal of Environmental Sciences, 2013, 25(10):2123-2129
    [42] Zhao W, Huang X, Lee D. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system[J]. Separation and Purification Technology, 2009, 66(2):279-286
    [43] Toh S, Ashbolt N. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J]. Applied Microbiology and Biotechnology, 2002, 59(2-3):344-352
    [44] 程建光, 陈平, 王雪琴. 焦化废水中同步硝化反硝化产生机理的研究[J]. 环境与可持续发展, 2007, 6:54-56
    [45] Papadimitriou C A, Samaras P, Sakellaropoulos G P. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors[J]. Bioresource Technology, 2009, 100(1):31-37
    [46] Kim Y M, Park D, Lee D S, et al. Sudden failure of biological nitrogen and carbon removal in the full-scale pre-denitrification process treating cokes wastewater[J]. Bioresource Technology, 2009, 100(19):4340-4347
    [47] Zhuang H, Han H, Jia S, et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2014, 157:223-230
    [48] 邢向军, 周集体, 成耀武, 等. A-A/O 法在焦化废水处理中的运行与管理[J]. 环境工程, 2005, 23(2):29-32
    [49] 沈连峰, 申艳萍, 刘文霞, 等. 物化-水解酸化-A/O 组合法处理焦化废水[J]. 水处理技术, 2007, 33(9):90-93
    [50] Fang F, Han H, Zhao Q, et al. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment[J]. Bioresource Technology, 2013, 150:314-320
    [51] Cho K H, Kim J O, Kang S, et al. Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH[J]. Separation and Purification Technology, 2014, 132:697-703
    [52] Zhao W T, Huang X, Lee D J, et al. Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention[J]. Journal of Membrane Science, 2009, 330(1):57-64
    [53] Felföldi T, Székely A J, Gorál R, et al. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 2010, 101(10):3406-3414
    [54] Wang W, Ma W, Han H, et al. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor[J]. Bioresource Technology, 2011, 102(3):2441-2447
    [55] Kim Y M. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant[J]. Bioresource Technology, 2013, 147:627-631
    [56] Gu Q, Sun T, Wu G, et al. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater[J]. Bioresource Technology, 2014, 166:72-78
    [57] Wang W, Han H, Yuan M, et al. Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition[J]. Journal of Environmental Sciences, 2010, 22(12):1868-1874
    [58] Tonge M M, Xu X. Sequential biological removal of COD and ammonia-nitrogen from coke plant wastewater[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2000, 26(3):241-246
    [59] 刘承东, 宋晓玲. A2/O 生物脱氮工艺在焦化废水处理中的应用[J]. 煤化工, 2006, 123(2):51-53
    [60] Lim B R, Hu H Y, Huang X, et al. Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater[J]. Process Biochemistry, 2002, 37(9):943-948
    [61] Li W, Zheng S K. A combination of anaerobic and aerobic treatment for ammonia-laden coke plant effluent:The pilot study[J]. International Society for Environmental Information Sciences, 2004, 2:602-610
    [62] Zhou S, Watanabe H, Wei C, et al. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor[J]. Ecotoxicology and Environmental Safety, 2015, 115:217-222
    [63] Yuan X, Sun H, Guo D. The removal of COD from coking wastewater using extraction replacement-biodegradation coupling[J]. Desalination, 2012, 289:45-50
    [64] Zhao Q, Han H, Hou B, et al. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process[J]. Journal of Environmental Sciences, 2014, 26(11):2231-2239
    [65] Zhang S, Zheng J, Chen Z. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater[J]. Separation and Purification Technology, 2014, 132:610-615
    [66] 梁春新. A2O 法处理焦化废水的运行和优化改进实践[J]. 煤化工, 2013 (4):49-52
    [67] 杨志林, 王开春, 张彬彬, 等. O1/A1/O2/A2工艺处理焦化废水试验研究[J]. 水处理技术, 2012, 38(009):79-82
    [68] 黄浪, 王国承, 刘洪, 等. 好氧—兼氧—好氧技术处理焦化废水[J]. 工业水处理, 2011, 31(4):72-75
    [69] 滕蒙, 孟庆锐. 利用 A/A/O 工艺处理焦化废水的工程实例总结[J]. 科学技术与工程, 2010 (3):835-838
    [70] 赖鹏, 赵华章, 叶正芳, 等. 生物滤池 A/O工艺处理焦化废水研究[J]. 环境科学, 2008, 28(12):2727-2733
    [71] 李亚新, 赵义, 岳秀萍, 等. 生物膜法 A2/O2焦化废水处理系统中好氧反应器工艺特性[J]. 工业水处理, 2008, 28(1):30-33
    [72] 赵文涛, 黄霞, 李笃中, 等. 无排泥条件下的膜-生物反应器系统处理焦化废水可行性研究[J]. 环境科学, 2009, 30(11):3316-3323
    [73] 李应超, 代永前. A/O 生化工艺在焦化废水处理中的应用[J]. 河南化工, 2009, 25(12):33-36
    [74] 李柳, 李立敏, 徐军富. OAO工艺应用高效优势菌处理焦化废水的中试[J]. 燃料与化工, 2006, 37(5):37-40
    [75] 潘耀祖, 蔡尔善. 采用 A/O (内循环) 生物脱氮技术处理焦化废水的实践体会[J]. 净水技术, 2008, 27(6):42-45
    [76] 王健. A2/O2工艺在焦化废水处理中的应用[J]. 环境科学与管理, 2008, 33(8):112-113
    [77] 王婷, 钱天伟, 刘宏芳, 等. A2/O 法处理焦化废水的工程应用[J]. 科技情报开发与经济, 2008, 18(30):140-141
    [78] 贾鹏, 牛继勇, 李君敏. A/O2工艺处理焦化废水[J]. 给水排水, 2007, 33(3):69-70
    [79] Ma Q, Qu Y, Shen W, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179:436-443
    [80] Oulego P, Collado S, Garrido L, et al. Wet oxidation of real coke wastewater containing high thiocyanate concentration[J]. Journal of Environmental Management, 2014, 132:16-23
    [81] Vázquez I, Rodríguez J, Marañón E, et al. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J]. Journal of Hazardous Materials, 2006, 137(3):1773-1780
    [82] Chang E E, Hsing H J, Chiang P C, et al. The chemical and biological characteristics of coke-oven wastewater by ozonation[J]. Journal of Hazardous Materials, 2008, 156(1):560-567
    [83] 韦朝海, 贺明和, 任源, 等. 焦化废水污染特征及其控制过程与策略分析[J]. 环境科学学报, 2007, 27(7):1083-1093
    [84] Ayoob S, Gupta A K, Bhat V T. A conceptual overview on sustainable technologies for the defluoridation of drinking water[J]. Critical Reviews in Environmental Science and Technology, 2008, 38(6):401-470
  • 加载中
计量
  • 文章访问数:  1481
  • HTML全文浏览数:  1390
  • PDF下载数:  733
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-27
  • 刊出日期:  2015-09-15

焦化废水污染指标的相关性分析

  • 1.  华南理工大学环境与能源学院, 广州, 510006;
  • 2.  工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006;
  • 3.  华南理工大学生物科学与工程学院, 广州, 510006
基金项目:

国家自然科学基金(51278199,21377040)

广东省教育厅学科建设专项资金(2013CXZDA004)资助.

摘要: 焦化废水包含不同形态与化合态的化合物.废水中各类化合物在降解过程中的变化对污染风险的判断和水处理工艺的选择都有很大的影响.以74篇国内外有关焦化废水生物处理的文献作为统计背景值,结合课题组近10年的基础研究与工程实践,分析存在于焦化废水中污染指标之间的相互依赖关系,解析COD、TN、色度的构成,评价我国目前的执行标准在指导生产方面的合理性.研究结果发现,不同企业焦化废水的水质存在较大的差异,所有焦化厂普遍忽视TP、苯、PAHs、苯并(a)芘指标的监控,COD和油类的最终出水达标率仅为16.67%和28.57%.焦化废水原水中的硫氰化物、氟离子和色度的平均浓度分别为259.37、135.66 mg·L-1和713.75倍,检出率很高,建议作为控制性指标加以关注.在目前统计到的文献中,构成焦化废水COD的组分为:挥发酚(47.28%)、硫氰化物(19.48%)、硫化物(6.81%)、氰化物(2.41%)、油类和有机胺类等(24.02%);构成TN的组分为:氨氮(48.49%)、有机氮(35.89%)、硫氰化物(12.27%)、氰化物(2.35%)、硝态氮和亚硝态氮(1%);构成色度的主要组分有带显色基团的有机物、显色离子团和硫化物等.构成COD、TN、色度等3项指标的化合物几乎涵盖了焦化废水中的所有组分.综上所述,可将焦化废水指标归纳为COD类、TN类和色度等3大类,通过归一化管理实现简化的目标.

English Abstract

参考文献 (84)

目录

/

返回文章
返回