钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)

王婷, 刘文, 李学钊, 焦晓琳. 钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)[J]. 环境化学, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
引用本文: 王婷, 刘文, 李学钊, 焦晓琳. 钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)[J]. 环境化学, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
WANG Ting, LIU Wen, LI Xuezhao, JIAO Xiaolin. Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption[J]. Environmental Chemistry, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
Citation: WANG Ting, LIU Wen, LI Xuezhao, JIAO Xiaolin. Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption[J]. Environmental Chemistry, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302

钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)

  • 基金项目:

    黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金(K318009902-1428)资助.

Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption

  • Fund Project:
  • 摘要: 以锐钛型纳米TiO2为原材料, 采用水热法合成了钛酸盐纳米片(TNS), 系统研究了Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附行为, 以及不同pH下TNS光催化协同吸附对水体中Cr(Ⅵ)和Cr(Ⅲ)的同步去除.TEM及XRD表征结果表明, 制备的TNS呈现出锐钛矿与钛酸盐混合晶相, 这对于其光催化和吸附性能的发挥极为重要.吸附实验证实, TNS对Cr(Ⅵ)和Cr(Ⅲ)的吸附显著受pH影响, 高pH利于Cr(Ⅲ)的吸附, 而Cr(Ⅵ)在低pH下吸附量更大.Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附速度较快, 吸附动力学符合准二级动力学模型(R2 > 0.99).吸附等温线结果符合Langmuir方程(R2 > 0.99), pH 5时, Cr(Ⅲ)的最大吸附量(13.19 mg·g-1)远大于Cr(Ⅵ)(0.63 mg·g-1), 因此, 单一吸附不是有效处理Cr(Ⅵ)的手段, 光催化还原是必要的.光催化-吸附实验表明, 随着pH的增加, TNS光催化还原Cr(Ⅵ)反应速率逐渐降低, 但产生的Cr(Ⅲ)在TNS表面的吸附量显著增加.综合可知, 光催化-吸附协同反应最佳pH值为5, Cr(Ⅵ)和总Cr的去除率可达97.6%, 且体系中无Cr(Ⅲ)的积累.该研究为同步有效去除水体中的Cr(Ⅵ)和Cr(Ⅲ)提供了一种新的可参照的途径.
  • 加载中
  • [1] 王亚军, 王进喜. 响应曲面法优化腐植酸去除水中重金属铬的吸附条件及热力学研究[J]. 环境化学, 2013, 32(12): 2282-2289
    [2] 刘淼, 董德明, 张白羽, 等.光催化法处理电镀含铬废水[J].吉林大学自然科学学报, 1998, 2: 99-101
    [3] 裘凯栋, 黎维彬. 水溶液中六价铬在碳纳米管上的吸附[J]. 物理化学学报, 2006, 22(12): 1542-1546
    [4] 戴遐明, 陈永华, 李庆丰, 等.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究[J].环境科学, 1996, 17(6):34-36
    [5] Sun A M, Zheng L M, Zheng S, et al. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(Ⅵ) [J]. Journal of Colloid and Interface Science, 2013, 404: 102-109
    [6] Zheng S, Jiang W J, Rashid M, et al. Selective reduction of Cr(Ⅵ) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 Photocatalysis[J]. Molecules, 2015, 20(2): 2622-2635
    [7] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube [J]. Langmuir, 1998, 14(12): 360-3163
    [8] Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing [J]. Advanced Materials, 1999, 11(15): 1307-1311
    [9] Wang L, Liu W, Wang T, et al. Highly efficient adsorption of Cr(Ⅵ) from aqueous solutions by amino-functionalized titanate nanotubes [J]. Chemical Engineering Journal, 2013, 225: 153-163
    [10] Niu G J, Liu W, Wang T, et al. Absorption of Cr(Ⅵ) onto amino-modified titanate nanotubes using 2-Bromoethylamine hydrobromide through S(N)2 reaction [J]. Journal of Colloid and Interface Science, 2013, 401: 133-140
    [11] Wang T, Liu W, Xiong L, et al. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) onto titanate nanotubes [J]. Chemical Engineering Journal, 2013, 215: 366-374
    [12] Liu W, Wang T, Borthwick A G L, et al. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: Competition and effect of inorganic ions [J]. Science of the Total Environment, 2013, 456: 171-180
    [13] Hu C C, Hsu T C, Lu S Y. Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment [J]. Applied Surface Science, 2013, 280: 171-178
    [14] Grover I S, Singh S, Pal B.The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes [J]. Applied Surface Science, 2013, 280: 366-372
    [15] Liu W, Ni J R, Yin X C. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) with titanatenanotbubes [J].Water Research, 2014, 53: 12-15
    [16] Rizzo L, Meric S, Kassinos D, et al. Degradation of diclofenac by TiO2photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays [J]. Water Research, 2009, 43(4): 979-988
    [17] Satterfield C N. Mass transfer in heterogeneous catalysis [M]. RE Krieger Publishing Company, 1981
    [18] Valente J P S, Padilha P M, Florentino A O. Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2 [J]. Chemosphere, 2006, 64(7): 1128-1133
    [19] Ren L, Liu YD, Qi X, et al. An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries [J].Journal of Materials Chemistry, 2012, 22: 21513-21518
    [20] Wei M D, Konishi Y, Arakawa H. Synthesis and characterization of nanosheet-shaped titanium dioxide [J]. Journal of Materials Science, 2007, 42(2): 529-533
    [21] 韩云飞, 刘文, 王婷, 等. Cd(Ⅱ) 、Zn(Ⅱ) 、Cu(Ⅱ) 和Cr(Ⅲ) 在钛酸纳米管上的吸附行为[J], 环境化学, 2013, 32(11): 2007-2015
    [22] Huang J Q, Cao Y G, Deng Z H, et al. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment [J]. Journal of Solid State Chemistry, 2011, 184: 712-719
    [23] Xiong L, Chen C, Chen Q, et al. Adsorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions using titanate nanotubes prepared via hydrothermal method [J]. Journal of Hazardous Materials, 2011, 189: 741-748
    [24] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403
    [25] Freundlich H. Vber die adsorption in lÜsungen [J]. Zeitschrift Fur Physikalische Chemie, 1906, 57: 385-470
    [26] Chen F T, Gao Y P, Liu Z, et al. Effective removal of high-chroma crystal violet over TiO2-based nanosheet by adsorption-photocatalytic degradation [J].Chemical Engineering Journal, 2012, 204-206: 107-113
  • 加载中
计量
  • 文章访问数:  1666
  • HTML全文浏览数:  1553
  • PDF下载数:  660
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-23
  • 刊出日期:  2015-10-15
王婷, 刘文, 李学钊, 焦晓琳. 钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)[J]. 环境化学, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
引用本文: 王婷, 刘文, 李学钊, 焦晓琳. 钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)[J]. 环境化学, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
WANG Ting, LIU Wen, LI Xuezhao, JIAO Xiaolin. Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption[J]. Environmental Chemistry, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302
Citation: WANG Ting, LIU Wen, LI Xuezhao, JIAO Xiaolin. Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption[J]. Environmental Chemistry, 2015, 34(10): 1777-1784. doi: 10.7524/j.issn.0254-6108.2015.10.2015032302

钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)

  • 1.  北京大学环境工程实验室, 北京, 100871;
  • 2.  北京大学深圳研究生院, 环境与能源学院, 深圳, 518055
基金项目:

黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金(K318009902-1428)资助.

摘要: 以锐钛型纳米TiO2为原材料, 采用水热法合成了钛酸盐纳米片(TNS), 系统研究了Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附行为, 以及不同pH下TNS光催化协同吸附对水体中Cr(Ⅵ)和Cr(Ⅲ)的同步去除.TEM及XRD表征结果表明, 制备的TNS呈现出锐钛矿与钛酸盐混合晶相, 这对于其光催化和吸附性能的发挥极为重要.吸附实验证实, TNS对Cr(Ⅵ)和Cr(Ⅲ)的吸附显著受pH影响, 高pH利于Cr(Ⅲ)的吸附, 而Cr(Ⅵ)在低pH下吸附量更大.Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附速度较快, 吸附动力学符合准二级动力学模型(R2 > 0.99).吸附等温线结果符合Langmuir方程(R2 > 0.99), pH 5时, Cr(Ⅲ)的最大吸附量(13.19 mg·g-1)远大于Cr(Ⅵ)(0.63 mg·g-1), 因此, 单一吸附不是有效处理Cr(Ⅵ)的手段, 光催化还原是必要的.光催化-吸附实验表明, 随着pH的增加, TNS光催化还原Cr(Ⅵ)反应速率逐渐降低, 但产生的Cr(Ⅲ)在TNS表面的吸附量显著增加.综合可知, 光催化-吸附协同反应最佳pH值为5, Cr(Ⅵ)和总Cr的去除率可达97.6%, 且体系中无Cr(Ⅲ)的积累.该研究为同步有效去除水体中的Cr(Ⅵ)和Cr(Ⅲ)提供了一种新的可参照的途径.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回