环境水样中BDE-47的表面增强拉曼光谱定量定性分析

于文文, 段晋明, 杜晶晶, 景传勇. 环境水样中BDE-47的表面增强拉曼光谱定量定性分析[J]. 环境化学, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
引用本文: 于文文, 段晋明, 杜晶晶, 景传勇. 环境水样中BDE-47的表面增强拉曼光谱定量定性分析[J]. 环境化学, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
YU Wenwen, DUAN Jinming, DU Jingjing, JING Chuanyong. Identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether in water by surface-enhanced Raman scattering technique[J]. Environmental Chemistry, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
Citation: YU Wenwen, DUAN Jinming, DU Jingjing, JING Chuanyong. Identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether in water by surface-enhanced Raman scattering technique[J]. Environmental Chemistry, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202

环境水样中BDE-47的表面增强拉曼光谱定量定性分析

  • 基金项目:

    国家重大科学仪器设备开发专项(2011YQ0301241002)资助.

Identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether in water by surface-enhanced Raman scattering technique

  • Fund Project:
  • 摘要: 本研究利用酵母菌还原氯金酸得到纳米金,经过高温煅烧形成碳骨架支撑的金表面增强拉曼活性基底.以疏水性的多溴联苯醚(PBDEs)作为目标污染物,研究讨论了该基底的灵敏性与均一性.结果表明,基于基底表面碳与BDE-47之间的吸附作用,可以实现BDE-47的痕量检测,检测限为5×10-8 mol·L-1,并且BDE-47特征峰强度与浓度具有良好的线性关系,表明本方法可用于对BDE-47的定性定量分析,本方法对芴、芘等典型疏水污染物也具有较好的检测效果.
  • 加载中
  • [1] Rahman F,Langford K H,Scrmishaw M D,et al. Polybrominateddiphenylether (PBDE) flame retardants[J].The Science of The Total Environment,2001,275(1/3):1-17
    [2] De Wit C A. Brominated flame retardants,report 5065[R].Swedish Environmental Protection Agency,2000
    [3] De Wit C A. An overview of brominated flame retardants in the environment[R].Chemosphere,2002,46(5):583-624
    [4] Hites R A. Polybrominated diphenylethers in the environment and in people:Ameta-analysis of concentrations[J].Environmental Science & Technology,2004,38(4):945-956
    [5] 段冬,吴德礼,马鲁铭,等.多溴联苯醚的处理技术研究进展[J]. 四川环境,2010, 29 (1):110-114
    [6] 李子扬,陈永亨.多溴联苯醚的环境行为及其生态毒理效应[J]. 环境科学,2011,11(1):97-105
    [7] US Department of Health and Human Services[R].National Toxicology Program,1986
    [8] World Health Organization.Environmental Health Criteria 162: Brominated Diphenyl Ethers [R].Geneva:WHO,1994
    [9] Muir D C G,Backus S,Derocher A E,et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska,the Canadian Arctic,East Greenland and Svalbard[J].Environmental Science & Technology,2006,40(2):449-455
    [10] 刘汉霞,张庆华,江桂斌.多溴联苯醚及其环境问题[J]. 化学进展,2005,17(3):554-562
    [11] Du J J,Jing C Y. Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification[J].The Journal of Physical Chemistry C,2011,115(36):17829-17835
    [12] Sun Z L, Du J J, Yan L,et al. Rapid tetection of 2,2',4,4'-tetrabromodiphenyl ether (BD4-47) using a portable Au-colloid SERS sensor[J].Journal of Raman Spectroscopy,2014,45(9):745-749
    [13] Xu J W, Du J J, Jing C Y,et al. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect[J].ACS Applied Materials & Interfaces,2014,6(9):6891-6897
    [14] 冯艾,段晋明,杜晶晶,等.环境水样中五种多环芳烃的表面增强拉曼光谱定量分析[J]. 环境化学,2014,33(1):46-52
    [15] Stiles P L,Dieringer J A,Shah N C,et al.Surface-enhanced Raman spectroscopy [J].Annual Review of Analytical Chemistry,2008,1(1):601-626
    [16] Halvorson R A,Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses [J].Environmrntal Science & Technology,2010,44(20):7749-7755
    [17] Li Y,Song Y Y,Yang C,et al.Hydrogrn bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J].Electrochemistry Communications,2007,9(5):981-988
    [18] Zheng D Y, Hu C G, Gan T,et al. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles [J]. Sensors and Actuators B: Chemical,2010,148(1):247-252
    [19] Shrestha B, Anderson T A, Acosta-Martinez V,et al.The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon(PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere[J].Ecotoxicology and Environmental Safety,2015,116:143-149
    [20] Liu W X,Cheng F F,Li W B,et al. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents [J]. Environmental Pollution,2012,163:235-242
    [21] Jing L X,Shi Y E,Cui J C,et al. Hydrophobic gold nanostructures via electrochemical deposition for sensitive SERS detection of persistent toxic substrate [J]. RSC Advances,2015,5(18):13443-13450
  • 加载中
计量
  • 文章访问数:  1145
  • HTML全文浏览数:  1100
  • PDF下载数:  508
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-06-12
  • 刊出日期:  2015-12-15
于文文, 段晋明, 杜晶晶, 景传勇. 环境水样中BDE-47的表面增强拉曼光谱定量定性分析[J]. 环境化学, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
引用本文: 于文文, 段晋明, 杜晶晶, 景传勇. 环境水样中BDE-47的表面增强拉曼光谱定量定性分析[J]. 环境化学, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
YU Wenwen, DUAN Jinming, DU Jingjing, JING Chuanyong. Identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether in water by surface-enhanced Raman scattering technique[J]. Environmental Chemistry, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202
Citation: YU Wenwen, DUAN Jinming, DU Jingjing, JING Chuanyong. Identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether in water by surface-enhanced Raman scattering technique[J]. Environmental Chemistry, 2015, 34(12): 2179-2184. doi: 10.7524/j.issn.0254-6108.2015.12.2015061202

环境水样中BDE-47的表面增强拉曼光谱定量定性分析

  • 1.  西安建筑科技大学, 西安, 710055;
  • 2.  中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家重大科学仪器设备开发专项(2011YQ0301241002)资助.

摘要: 本研究利用酵母菌还原氯金酸得到纳米金,经过高温煅烧形成碳骨架支撑的金表面增强拉曼活性基底.以疏水性的多溴联苯醚(PBDEs)作为目标污染物,研究讨论了该基底的灵敏性与均一性.结果表明,基于基底表面碳与BDE-47之间的吸附作用,可以实现BDE-47的痕量检测,检测限为5×10-8 mol·L-1,并且BDE-47特征峰强度与浓度具有良好的线性关系,表明本方法可用于对BDE-47的定性定量分析,本方法对芴、芘等典型疏水污染物也具有较好的检测效果.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回