多壁碳纳米管对林丹的吸附和催化转化

杨吉睿, 孙红文. 多壁碳纳米管对林丹的吸附和催化转化[J]. 环境化学, 2016, 35(4): 629-638. doi: 10.7524/j.issn.0254-6108.2016.04.2015102302
引用本文: 杨吉睿, 孙红文. 多壁碳纳米管对林丹的吸附和催化转化[J]. 环境化学, 2016, 35(4): 629-638. doi: 10.7524/j.issn.0254-6108.2016.04.2015102302
YANG Jirui, SUN Hongwen. Adsorption and catalytic transformation of lindane on multi-walled carbon nanotubes[J]. Environmental Chemistry, 2016, 35(4): 629-638. doi: 10.7524/j.issn.0254-6108.2016.04.2015102302
Citation: YANG Jirui, SUN Hongwen. Adsorption and catalytic transformation of lindane on multi-walled carbon nanotubes[J]. Environmental Chemistry, 2016, 35(4): 629-638. doi: 10.7524/j.issn.0254-6108.2016.04.2015102302

多壁碳纳米管对林丹的吸附和催化转化

  • 基金项目:

    教育部创新团队发展计划(IRT13024)资助.

Adsorption and catalytic transformation of lindane on multi-walled carbon nanotubes

  • Fund Project: Supported by the Program for Innovative Research Team in University (IRT13024).
  • 摘要: 进入环境的纳米材料对共存化学污染物的环境行为有重要影响.本文选择3种多壁碳纳米管,分别为石墨化多壁碳纳米管(G-MWCNT)、羟基化多壁碳纳米管(O-MWCNT)和氨基化多壁碳纳米管(N-MWCNT),通过批次实验研究其对林丹的吸附行为和催化转化作用.林丹在3种多壁碳纳米管上的吸附动力学符合准二级动力学模型(R2>0.997),吸附速率常数(k2)分别为0.73(G-MWCNT)、0.60(N-MWCNT)和0.28(O-MWCNT) g·mg-1·h-1.林丹在3种多壁碳纳米管上吸附的等温线符合Freundlich经验模型(R2>0.979),不同pH条件下,吸附系数(KF)分别为28.0—30.0(G-MWCNT)、21.3—24.6(N-MWCNT)和9.1—10.2(O-MWCNT)mg1-n·Ln·g-1.平衡浓度为8.5 mg·L-1,在不同pH条件下林丹在3种多壁碳纳米管上的分配常数(Kd)分别为12.7—14.4(G-MWCNT)、8.7—9.8(N-MWCNT)和3.9—4.2(O-MWCNT)L·g-1.林丹是非离子型有机化合物,疏水作用在吸附过程中起主导作用,表面引入亲水性强的氨基和羟基后,N-MWCNT和O-MWCNT的吸附作用相比具有疏水性表面的G-MWCNT明显减弱.溶液的pH值(5.0—9.0)对同种多壁碳纳米管的吸附作用影响不显著.均相溶液中,林丹发生β-消去反应的准一级动力学表观速率常数kobs(0.017—10.2 d-1)随溶液pH值(7.0—12.0)升高而增大.N-MWCNT对林丹发生β-消去反应起催化作用,这种催化作用随pH值(7.0—9.0)升高而增强.当N-MWCNT存在时,林丹的去除率分别增加了7.5%(pH=7.0)、29.3%(pH=8.0)和30.1%(pH=9.0).在均相溶液和N-MWCNT体系中都检测到γ-1,3,4,5,6-五氯环己烯、1,2,4-三氯苯和1,2,3-三氯苯转化产物.
  • 加载中
  • [1] APUL O G, KARANFIL T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J]. Water Research, 2015, 68: 34-55.
    [2] LAM C W, JAMES J T, MCCLUSKEY R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J]. Critical Reviews in Toxicology, 2006, 36(3): 189-217.
    [3] DAHM M M, EVANS D E, SCHUBAUER-BERIGAN M K, et al. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: Mobile direct-reading sampling[J]. Annals of Occupational Hygiene, 2013, 57(3): 328-344.
    [4] SHRESTHA B, ANDERSON T A, ACOSTA-MARTINEZ V, et al. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere[J]. Ecotoxicology and Environmental Safety, 2015, 116: 143-149.
    [5] SUN W, JIANG B, WANG F, et al. Effect of carbon nanotubes on Cd(Ⅱ) adsorption by sediments[J]. Chemical Engineering Journal, 2015, 264: 645-653.
    [6] KUMAR R, KHAN M A, HAQ N. Application of carbon nanotubes in heavy metals remediation[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(9): 1000-1035.
    [7] AJMANI G S, CHO H H, ABBOTT-CHALEW T E, et al. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes[J]. Water Research, 2014, 59: 262-270.
    [8] CHEN W, LI Y, ZHU D, et al. Dehydrochlorination of activated carbon-bound 1,1,2,2-tetrachloroethane: Implications for carbonaceous material-based soil/sediment remediation[J]. Carbon, 2014, 78: 578-588.
    [9] CHEN W, ZHU D, ZHENG S, et al. Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1,1,2,2-tetrachloroethane[J]. Environmental Science & Technology, 2014, 48(7): 3856-3863.
    [10] MACKENZIE K, BATTKE J, KOPINKE F D. Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds: Part 1. γ-hexachlorocyclohexane[J]. Catalysis Today, 2005, 102: 148-153.
    [11] MACKENZIE K, BATTKE J, KOEHLER R, et al. Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds: Part 2. 1, 1, 2, 2-Tetrachloroethane[J]. Applied Catalysis B: Environmental, 2005, 59(3): 171-179.
    [12] SINGH R, MISRA V, MUDIAM M K R, et al. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions[J]. Journal of Hazardous Materials, 2012, 237: 355-364.
    [13] VIJGEN J, ABHILASH P C, LI Y, et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of lindane and its waste isomers[J]. Environmental Science and Pollution Research, 2011, 18(2): 152-162.
    [14] CHAKRABORTY P, ZHANG G, LI J, et al. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air-soil exchange[J]. Environmental Pollution, 2015, 204: 74-80.
    [15] YANG H, ZHOU S, LI W, et al. Residues, sources and potential biological risk of organochlorine pesticides in surface sediments of Qiandao lake, China[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(4): 521-524.
    [16] WEI L, YANG Y, LI Q, et al. Composition, distribution, and risk assessment of organochlorine pesticides in drinking water sources in south China[J]. Water Quality, Exposure and Health, 2014, 7(1): 89-97.
    [17] LOZOWICKA B, KACZYNSKI P, Paritova А, et al. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides[J]. Food and Chemical Toxicology, 2014, 64: 238-248.
    [18] ENRIQUEZ-VICTORERO C, HERNáNDEZ-VALDéS D, MONTERO-ALEJO A L, et al. Theoretical study of γ-hexachlorocyclohexane and β-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model[J]. Journal of Molecular Graphics and Modelling, 2014, 51: 137-148.
    [19] IGNATOWICZ K. A mass transfer model for the adsorption of pesticide on coconut shell based activated carbon[J]. International Journal of Heat and Mass Transfer, 2011, 54(23): 4931-4938.
    [20] LIAN F, CHANG C, DU Y, et al. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes[J]. Journal of Environmental Sciences, 2012, 24(9): 1549-1558.
    [21] LI S, ELLIOTT D W, SPEAR S T, et al. Hexachlorocyclohexanes in the environment: Mechanisms of dechlorination[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(19): 1747-1792.
    [22] ZHANG P, SUN H, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244(0): 217-224.
    [23] YU Q, ZHANG R, DENG S, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study[J]. Water Research, 2009, 43(4): 1150-1158.
    [24] LIU F, FAN J, WANG S, et al. Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon[J]. Chemical Engineering Journal, 2013, 219: 450-458.
    [25] CHEN J, CHEN W, ZHU D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution chemistry[J]. Environmental Science & Technology, 2008, 42(19): 7225-7230.
    [26] AGNIHOTRI S, MOTA J P B, ROSTAM-ABADI M, et al. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles[J]. Carbon, 2006, 44(12): 2376-2383.
    [27] PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24): 9005-9013.
    [28] WANG X, LIU Y, TAO S, et al. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes[J]. Carbon, 2010, 48(13): 3721-3728.
    [29] RAMANATHAN T, FISHER F T, RUOFF R S, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]. Chemistry of Materials, 2005, 17(6): 1290-1295.
    [30] YAN S, HUA B, BAO Z, et al. Uranium (Ⅵ) removal by nanoscale zerovalent iron in anoxic batch systems[J]. Environmental Science & Technology, 2010, 44(20): 7783-7789.
    [31] MULLER E A, GUBBINS K E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces[J]. Carbon, 1998, 36(10): 1433-1438.
    [32] MUSZYńSKI P, BRODOWSKA M S. Effects of potassium, ammonium, and calcium chlorides on the sorption of metamitron in soil[J]. Polish Journal of Environmental Studies, 2014, 23(6): 2125-2135.
    [33] ZHANG S, SHAO T, BEKAROGLU S S K, et al. Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry[J]. Water Research, 2010, 44(6): 2067-2074.
    [34] CHEN W, DUAN L, WANG L, et al. Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(18): 6862-6868.
    [35] HU H, NI Y, MONTANA V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth[J]. Nano letters, 2004, 4(3): 507-511.
    [36] DONG W, ZHANG P, LIN X, et al. Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China[J]. Science of the Total Environment, 2015, 505: 216-222.
  • 加载中
计量
  • 文章访问数:  652
  • HTML全文浏览数:  570
  • PDF下载数:  596
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-23
  • 刊出日期:  2016-04-15

多壁碳纳米管对林丹的吸附和催化转化

  • 1. 南开大学环境科学与工程学院, 教育部环境污染过程与基准重点实验室, 天津, 300071
基金项目:

教育部创新团队发展计划(IRT13024)资助.

摘要: 进入环境的纳米材料对共存化学污染物的环境行为有重要影响.本文选择3种多壁碳纳米管,分别为石墨化多壁碳纳米管(G-MWCNT)、羟基化多壁碳纳米管(O-MWCNT)和氨基化多壁碳纳米管(N-MWCNT),通过批次实验研究其对林丹的吸附行为和催化转化作用.林丹在3种多壁碳纳米管上的吸附动力学符合准二级动力学模型(R2>0.997),吸附速率常数(k2)分别为0.73(G-MWCNT)、0.60(N-MWCNT)和0.28(O-MWCNT) g·mg-1·h-1.林丹在3种多壁碳纳米管上吸附的等温线符合Freundlich经验模型(R2>0.979),不同pH条件下,吸附系数(KF)分别为28.0—30.0(G-MWCNT)、21.3—24.6(N-MWCNT)和9.1—10.2(O-MWCNT)mg1-n·Ln·g-1.平衡浓度为8.5 mg·L-1,在不同pH条件下林丹在3种多壁碳纳米管上的分配常数(Kd)分别为12.7—14.4(G-MWCNT)、8.7—9.8(N-MWCNT)和3.9—4.2(O-MWCNT)L·g-1.林丹是非离子型有机化合物,疏水作用在吸附过程中起主导作用,表面引入亲水性强的氨基和羟基后,N-MWCNT和O-MWCNT的吸附作用相比具有疏水性表面的G-MWCNT明显减弱.溶液的pH值(5.0—9.0)对同种多壁碳纳米管的吸附作用影响不显著.均相溶液中,林丹发生β-消去反应的准一级动力学表观速率常数kobs(0.017—10.2 d-1)随溶液pH值(7.0—12.0)升高而增大.N-MWCNT对林丹发生β-消去反应起催化作用,这种催化作用随pH值(7.0—9.0)升高而增强.当N-MWCNT存在时,林丹的去除率分别增加了7.5%(pH=7.0)、29.3%(pH=8.0)和30.1%(pH=9.0).在均相溶液和N-MWCNT体系中都检测到γ-1,3,4,5,6-五氯环己烯、1,2,4-三氯苯和1,2,3-三氯苯转化产物.

English Abstract

参考文献 (36)

目录

/

返回文章
返回