河西走廊东段大气降水特征及水汽来源分析

李宗杰, 宋玲玲, 田青. 河西走廊东段大气降水特征及水汽来源分析[J]. 环境化学, 2016, 35(4): 721-731. doi: 10.7524/j.issn.0254-6108.2016.04.2015102602
引用本文: 李宗杰, 宋玲玲, 田青. 河西走廊东段大气降水特征及水汽来源分析[J]. 环境化学, 2016, 35(4): 721-731. doi: 10.7524/j.issn.0254-6108.2016.04.2015102602
LI Zongjie, SONG Lingling, TIAN Qing. Analysis of precipitation characteristics and water vapor sources in the East of Hexi Corridor[J]. Environmental Chemistry, 2016, 35(4): 721-731. doi: 10.7524/j.issn.0254-6108.2016.04.2015102602
Citation: LI Zongjie, SONG Lingling, TIAN Qing. Analysis of precipitation characteristics and water vapor sources in the East of Hexi Corridor[J]. Environmental Chemistry, 2016, 35(4): 721-731. doi: 10.7524/j.issn.0254-6108.2016.04.2015102602

河西走廊东段大气降水特征及水汽来源分析

  • 基金项目:

    甘肃省杰出青年基金(1506RJDA282)

    中国科学院"西部之光"西部博士项目

    中国博士后管委会博士后国际交流计划项目 (20140043)

    中国博士后科学基金(2012M510219,2013T60899)资助.

Analysis of precipitation characteristics and water vapor sources in the East of Hexi Corridor

  • Fund Project: Supported by Gansu Province Science Fundfor Distinguished Young Scholars(1506RJDA282) a West Light Program for Talent Cultivation of Chinese Academy of Sciences, Post Doctoral Program of International Exchange Program for Postdoctoral Fellow of China (20140043) A Postdoctoral Fellow at the International Exchange Plans from China Postdoctoral Association (2012M510219, 2013T60899).
  • 摘要: 通过连续收集降水样品对河西走廊东段大气降水特征及水汽来源进行研究,运用相关分析、因子分析、富集因子和HYSPLIT模型,探讨2013年7月3日—2014年7月3日河西走廊东段降水常量离子的化学特征,结果表明,河西走廊东段pH值介于6.86—8.71,降水样品的电导率分布在78.42—502.50 μS·cm-1之间.Ca2+、Na+、Cl-、NO3-和SO42-是降水中的主要离子,Ca2+和Na+的浓度占阳离子总浓度的77.43%,而Cl-、NO3-和SO42-占阴离子总浓度的99.12%,降水中阳离子浓度的大小顺序为Ca2+> Na+> NH4+> K+> Mg2+,降水中阴离子浓度的大小顺序为SO42-> NO3-> Cl- >NO2- >F-;夏季大气降水中总离子浓度最低(50.61 ueq·L-1),而冬、春两季浓度较高,且春季最高(115.45 ueq·L-1);而单个降水离子的最高浓度却多出现在3—7月份;河西走廊东段的降水离子主要受陆源以及工农业生产和人类活动控制,海盐离子的影响极小.
  • 加载中
  • [1] 肖致美,李鹏,陈魁,等.天津市大气降水化学组成特征及来源分析[J].环境科学研究,2015,28(7):1025-1030.

    XIAO Z M,LI P,CHEN K,et al.Characteristics and sources of chemical composition of atmospheric precipitation in Tianjin[J].Research of Environmental Sciences,2015,28(7):1025-1030(in Chinese).

    [2] 王剑,徐美,叶霞,等. 沧州市大气降水化学特征分析[J].环境科学与技术,2014,37(4):96-102.

    WANG J,XU M,YE X,et al. Analysis on chemical characteristics of atmospheric precipitation in Cangzhou City[J]. Environmental Science & Technology,2014,37(4):96-102(in Chinese).

    [3] CALVO A I, OLMO F J, ALADOS-ARBOLEDAS L,et al. Chemical composition of wet precipitation at the background EMEP station in Viznar (Granada, Spain) (2001-2006)[J]. Atmos Res, 2010, 96: 408-420.
    [4] 王鑫彤,鞠法帅,韩德文,等.大气颗粒物中生物质燃烧示踪化合物的研究进展[J].环境化学,2015,34(10): 1885-1894.

    WANG X T,JU F S,HAN D W,et al.Research progress on the organic tracers of biomass burning in atmospheric aerosols[J].Environmental Chemistry,2015,34(10):1885-1894(in Chinese).

    [5] LI Z X, HE Y Q, PANG H X, et al. The chemistry of snow deposited during the summer monsoon and in the winter season at Baishui No.1 Glacier, Mt Yulong, China[J]. J Glacio, 2009,55(190):221-228.
    [6] 肖红伟,肖化云,王燕丽,等.典型污染城市9d 连续大气降水化学特征:以贵阳市为例[J].环境科学,2010,31(4): 865-870.

    XIAO H W, XIAO H Y,WANG Y L, et al. Chemical characteristics of 9 d continuous precipitation in a typical polluted city: A case study of Guiyang[J]. Environmental Science,2010,31(4):865-870(in Chinese).

    [7] SICKLES Ⅱ J E, GRIMM J W. Wet deposition from clouds and precipitation in three high-elevation regions of the Eastern United States[J]. Atmos Environ, 2003, 37:277-288.
    [8] ROCHA F R, SILVA J A F, LAGO C L,et al.Wet deposition and related atmosp heric chemistry in the So Paulo Metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrop Horesis with contactless conductivity detection[J].Atmos Environ, 2003, 37: 105-115.
    [9] BASAK B,ALAGHA O. The chemical composition of rainwater over Buyukcekmece Lake, Istanbul[J]. Atmospheric Research,2004, 71 (4),275-288.
    [10] LI Z X, FENG Q, LIU W, et al. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains[J]. Global and Planetary Change, 2014.122: 345-361.
    [11] LI Z X, FENG Q, LIU W, et al.The stable isotope evolution in Shiyi glacier system during the ablation period in the north of Tibetan Plateau, China[J]. Quaternary International, DOI: 10.1016/j.quaint.2015.02.013.
    [12] GIBBS R J. Mechanisms controlling world water chemistry[J].Science,1970, 170:1088-1090.
    [13] 李宗杰, 李宗省, 田青, 等. 祁连山中段降水化学的环境意义研究[J]. 环境科学,2014.35(12):4465-4474.

    LI Z J,LI Z X,TIAN Q, et al. Environmental significance of wet deposition composition in the central Qilian Mountains,China[J]. Environmental Science,2014,35(12):4465-4474(in Chinese).

    [14] XU Z, HAN H. Chemical and strontium isotope characterization of rainwater in Beijing, China [J]. Atmospheric Environment, 2009,43: 1954-1961.
    [15] 盛奇,王恒旭,胡永华,等.黄河流域河南段土壤背景值与基准值研究[J].安徽农业科学, 2009, 18: 8647-8650. SHENG Q, WANG H X, HU Y H, et al. Study on the soil background values and reference values of the Henan River Basin in the Yellow River [J]. Journal of Anhui Agricultural Sciences, 2009

    ,18: 8647-8650(in Chinese).

    [16] 李宗省,何元庆,院玲玲,等.丽江市降水常量离子的化学特征[J].环境化学,2008,27(5):648-652.

    LI Z S, HE Y Q, YUAN L L, et al. The chemical characteristics of precipitation constant ion in Lijiang [J]. Environmental Chemistry, 2008,27 (5): 648-652(in Chinese).

    [17] 程新金,黄美元.降水化学特性的一种分类分析方法[J]. 气候与环境研究,1998,3(1):83-89.

    CHENG X J, HUANG M Y.A classification analysis of precipitation chemistry characteristics [J]. Climate and Environment Research, 1998,3 (1): 83-89(in Chinese).

    [18] ZHANG X,JIANG H,ZHANG Q,et al. Chemical characteristics of rainwater in northeast China:A case study of Dalian [J].Atmospheric Research,2012, 116:151-160.
    [19] 王艳,葛福玲,刘晓环,等.泰山降水化学及大气传输的研究[J].环境科学学报,2006,26(7):1187-1194.

    WANG Y, GE F L, LIU X H, et al. Study on the precipitation chemistry and atmospheric transport at the Mount Taishan [J]. Acta Scientiae Circumstantiae,2006,26(7):1187-1194(in Chinese).

    [20] 吴起鑫,韩贵琳,李富山,等.珠江源区南、北盘江丰水期水化学组成特征及来源分析[J].环境化学,2015,34(7):1289-1296.

    WU Q X, HAN G L, LI F S. Pearl River source region of South, North Panjiang Feng water water chemical composition characteristics and source analysis [J]. Environmental Chemistry, 2015,34 (7): 1289-1296(in Chinese).

    [21] 张泽锋,沈利娟,朱彬,等.南京市降水化学特征及其来源研究[J].大气科学学报,2015,38(4): 473-482.

    ZHANG Z F,SHEN L J,ZHU B,et al.Chemical characteristics and potential sources of precipitation in Nanjing[J].Trans Atmos Sci,2015,38(4):473-482(in Chinese).

    [22] 沈利娟,李莉,吕升,等.不同气团对嘉兴市大气污染物变化特征的影响[J].环境化学,2015,34(4):754-762.

    SHEN L J,LI L,LU S, et al. Impacts of different air masses on the variations of air pollutants in Jiaxing[J]. Environmental Chemistry,2015,34(4):754-762(in Chinese).

    [23] AL-KHASHMAN O A. Ionic composition of wet precipitation in the Petra Region, Jordan[J]. Atmospheric Research, 2005,78(1/2): 1-12.
    [24] MA J, ZHANG P, ZHU G, et al. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China[J]. Journal of Hydrology, 2012,436: 92-101.
    [25] GUO X Y, FENG Q, LIU W, et al. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China[J]. Hydrological Processes, 2015. Doi: 10.1002/hyp.10495.
    [26] LI C L, KANG S C, Zhang Q G, et al. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau[J].Atmos Res, 2007,85:351-360
    [27] XU Z F,LI Y S,TANG Y, et al.Chemical and strontium isotope characterization of rainwater at an urban site in Loess Plateau,Northwest China[J].Atmospheric Research,2009,94:481-490.
    [28] LU X W,LI L Y,LI N, et al.Chemical characteristics of spring rainwater of Xi'an City,NW China[J].Atmospheric Environment,2011,45: 5058-5063.
    [29] ZHANG D D,JIM C Y,PEART M R, et al.Rapid changes of precipitation pH in Qinghai Province,the northeastern Tibetan Plateau[J].Science of the Total Environment,2003,305: 241-248.
    [30] FENG Q, LIU W, SU Y H, et al.Distribution and evolution of water chemistry in Heihe River basin[J]. Environ Geol, 2004, 45, 947-956.
    [31] HUANG K, ZHUANG G S, XU C, et al.The chemistry of the severe acidic precipitation in Shanghai,China[J]. Atmospheric Research,2008,89: 149-160.
    [32] TU J,WANG H S,ZHANG Z F et al. Trends in chemical composition of precipitation in Nanjing,China,during 1992-2003[J].Atmospheric Research,2005,73: 283-298.
    [33] XU J, HOU S, QIN D, et al. Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibet-Himal region[J]. Geophysical Research Letters,2007,34, LI7504. doi: 10.1029/2007GL030853.
  • 加载中
计量
  • 文章访问数:  1295
  • HTML全文浏览数:  1190
  • PDF下载数:  688
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-26
  • 刊出日期:  2016-04-15

河西走廊东段大气降水特征及水汽来源分析

  • 1. 甘肃农业大学林学院, 兰州, 730070
基金项目:

甘肃省杰出青年基金(1506RJDA282)

中国科学院"西部之光"西部博士项目

中国博士后管委会博士后国际交流计划项目 (20140043)

中国博士后科学基金(2012M510219,2013T60899)资助.

摘要: 通过连续收集降水样品对河西走廊东段大气降水特征及水汽来源进行研究,运用相关分析、因子分析、富集因子和HYSPLIT模型,探讨2013年7月3日—2014年7月3日河西走廊东段降水常量离子的化学特征,结果表明,河西走廊东段pH值介于6.86—8.71,降水样品的电导率分布在78.42—502.50 μS·cm-1之间.Ca2+、Na+、Cl-、NO3-和SO42-是降水中的主要离子,Ca2+和Na+的浓度占阳离子总浓度的77.43%,而Cl-、NO3-和SO42-占阴离子总浓度的99.12%,降水中阳离子浓度的大小顺序为Ca2+> Na+> NH4+> K+> Mg2+,降水中阴离子浓度的大小顺序为SO42-> NO3-> Cl- >NO2- >F-;夏季大气降水中总离子浓度最低(50.61 ueq·L-1),而冬、春两季浓度较高,且春季最高(115.45 ueq·L-1);而单个降水离子的最高浓度却多出现在3—7月份;河西走廊东段的降水离子主要受陆源以及工农业生产和人类活动控制,海盐离子的影响极小.

English Abstract

参考文献 (33)

目录

/

返回文章
返回