低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气

李永峰, 吕云汉, 李巧燕, 陈思远. 低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气[J]. 环境化学, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501
引用本文: 李永峰, 吕云汉, 李巧燕, 陈思远. 低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气[J]. 环境化学, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501
LI Yongfeng, LYV Yunhan, LI Qiaoyan, CHENG Siyuan. Production of high purity hydrogen at low pH on up-flow anaerobic sludge blanket (UASB) with molasses as substrate[J]. Environmental Chemistry, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501
Citation: LI Yongfeng, LYV Yunhan, LI Qiaoyan, CHENG Siyuan. Production of high purity hydrogen at low pH on up-flow anaerobic sludge blanket (UASB) with molasses as substrate[J]. Environmental Chemistry, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501

低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气

  • 基金项目:

    中央高校基本科研业务费专项资金项目(2572015AA17)和黑龙江省自然科学基金(E201354)资助.

Production of high purity hydrogen at low pH on up-flow anaerobic sludge blanket (UASB) with molasses as substrate

  • Fund Project: Supported by the Fundamental Research Funds for the Central Universities(2572015AA17) and the Natural Science Foundation of Heilongjiang Province of China(E201354).
  • 摘要: 采用由有机玻璃制成的上流式厌氧污泥床反应器(UASB),以糖蜜废水为发酵底物,投加适量氯化铵和磷酸二氢钾,研究在低pH值下系统的产氢性能.在系统启动初期,投加碳酸氢钠控制进水pH=6.75—7.15,使系统处于中性厌氧发酵,固定进水COD为4000 mg·L-1,HRT=8 h.系统运行20 d后,系统处于混合型发酵类型,随后停止投加碳酸氢钠.系统经过45 d的运行,乙醇和乙酸浓度占总浓度的79.39%,而丙酸的浓度只占总浓度的10.89%,形成了稳定的典型乙醇型发酵.第65天,乙醇和乙酸的浓度分别为840.56 mg·L-1、403.12 mg·L-1,乙醇与乙酸浓度占总浓度的93.2%,氢气含量为86.97%.在出水pH=2.81时,系统产氢性能最佳.氢气产率为2.079 mmol·L-1·h-1,氢气产量1.12 m3·m-3·d-1,氢气含量91.46%,是稳定期氢气含量的1.65倍.
  • 加载中
  • [1] DINCER I. Technical, environmental and exergetic aspects of hydrogen energy systems [J]. International Journal of Hydrogen Energy, 2002,27:265-285.
    [2] RODRÍGUEZ J, LEMA J M, KLEEREBEZEM R. Energy-based models for environmental biotechnology [J]. Trends in biotechnology, 2008,26(7):366-374.
    [3] LI D M, CHEN H Z. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation [J].International Journal of Hydrogen Energy, 2007, 32:1742-1748.
    [4] SHOW K Y, ZHANG Z P, TAY J H, et al. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor [J]. International Journal of Hydrogen Energy, 2007, 32(18):4744-4753.
    [5] BARTELS J R, PATE M B, OLSON N K. An economic survey of hydrogen production from conventional and alternative energy sources [J].International Journal of Hydrogen Energy, 2010, 35:8371-8384.
    [6] 李永峰,王艺璇,刘春妍.COD/N对新型UASB生物制氢工艺的影响[J].太阳能学报,2012,33(10):1836-1840.

    LI Y F,WANG Y X,LIU C Y. Effects of COD/N on biohydrogen production by new UASB process [J]. ACTA Energiae Solaris Sinica,2012, 33(10):1836-1840(in Chinese).

    [7] DAS D, VEZIROGLU T N. Hydrogen production by biological processes: A survey of literature [J]. International Journal of Hydrogen Energy, 2001, 26 (1): 13-28.
    [8] LEITäO R C, HAANDEL A C VAN, ZEEMAN G, et al. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review [J]. Bioresource technology, 2006, 97 (9):1105-1118.
    [9] WANG Y, WANG H, FENG X Q, et al. Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge [J]. International Journal of Hydrogen Energy, 2010, 35:3092-3099.
    [10] 李建政,任南琪,林明.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252-256.

    LI J Z, REN N Q, LIN M, et al. Hydrogen bio-production by anaerobic fermentation organic wastewater in pilot-scale [J].ACTA Energiae Solaris Sinica,2002, 23(2):252-256.

    [11] HAWKES F, HUSSY I, KYAZZE G, et al. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and process [J]. International Journal of Hydrogen Energy, 2007, 32:172-184.
    [12] OZGUR E, MARS A E, PEKSEL B, et al. Biohydrogen production from beet molasses by sequential dark and photofermentation [J]. International Journal of Hydrogen Energy, 2010, 35:511-517.
    [13] TUGBA K, PATRICK C H. Hydrogen production from sugar industry wastes using single-stage photofermentation [J].Bioresource Technology, 2012, 112:131-136.
    [14] HAN S K, SHIN H S. Biohydrogen production by anaerobic fermentation of food waste [J]. International Journal of Hydrogen Energy, 2004, 29:569-577.
    [15] TIWARI M, GUHA S, HARENDRANATH C, et al. Influence of extrinsic factors on granulation in UASB reactor [J]. Applied microbiology and biotechnology, 2006, 71 (2):145-154.
    [16] SCHMIDT J E, AHRING B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors [J].Biotechnology and bioengineering, 1996, 49 (3): 229-246.
    [17] GHANGREKAR M M, ASOLEKAR S R, RANGANATHAN K R, et al. Experience with UASB reactor start-up under different operating conditions [J].Water Science and Technology, 1996, 34 (5/6):421-428.
    [18] FAN Y T, LI C L, LAY J J, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen producing anaerobes in cow dung compost [J]. Bioresource technology, 2004, 91 (2): 189-193.
    [19] LIN C, WU C, HUNG C. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures [J]. International Journal of Hydrogen Energy, 2008, 33 (1):43-50.
    [20] REN N Q, QIN Z, LI J Z. Comparison and analysis of hydrogen production capacity with different acidogenic fermentative microflora [J]. Environmental Science, 2003, 24 (1): 70-74.
    [21] LEW B, LUSTIG I, BELIAVSKI M, et al. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates [J]. Bioresource technology, 2011,102 (7):4921-4924.
    [22] APHA. Standard methods for the examination of water and wastewater (19th edition) [M]. American Public Health Association, Washington, DC, 1995.
    [23] ZHU G F, WU P, WEI Q S. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities [J]. International Journal of Hydrogen Energy, 2010, 35:8350-8356.
    [24] 葛源,贺纪正,郑袁明,等.稳定性同位素探测技术在微生物生态学研究中的应用[J].生态学报,2006,26(5):1574-1582.

    GE Y, HE J Z, ZHENG Y M, et al. Stable isotope probing and its applications in microbial ecology [J].Acta Ecologicasinica, 2006, 26(5):1574-1582(in Chinese).

    [25] ORPHANVJ, HOUSE CH, HINRICHSK U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis [J].Science,2001,293(5529): 484-487.
    [26] LUEDERS T, POMMERENKE B, FRIEDRICH M W. Stable-isotope probing of microorganisms thriving at thermodynamic limits: Syntrophic propionate oxidation inflooded soil. Applied and Environmental Microbiology, 2004, 70(10): 5778-5786.
    [27] REN N Q, WANG B Z, HUANG J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor [J]. Biotechnology and bioengineering, 1997, 54(5):428-433.
    [28] MCCARTY D M, OLESKIEWICZ J A.Competition between methanogens and sulfate reducers: Effect of COD, sulfate ratio and acclimatization [J]. Water Environment Research, 1993, 65: 655-664
    [29] REN N Q, CHEN X L, ZHAO D. Control of fermentation types in continuous-flow acidogenic reactors: Effects of pH and redox potential [J]. Journal of Harbin Institute of Technology (New Series), 2001, 8 (2):116-119.
    [30] 任南琪.产酸发酵细菌演替规律研究-pH≤5条件下ORP的影响[J]. 哈尔滨建筑大学学报,1999,32(2):29-34.

    REN N Q. Succession of acidogenic bacteria for carbohydrate fermentation: Effect of ORP at PH≤5[J].Journal of Harbin University of C.E. &Architecture, 1999,32 (2):29-34(in Chinese).

    [31] 任南琪, 宫曼丽, 邢德峰. 连续流生物制氢反应器乙醇型发酵的运行特性[J].环境科学,2004,25(6):113-116.

    REN NANQI, GONG MANLI, XING DEFENG. Continuous Operation of Hydrogen Bio-Production Reactor with Ethanol-Type Fermentation [J].Environmental Science, 2004, 25(6):113-116(in Chinese).

    [32] LI J Z, LI B K, ZHU G F, et al. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR) [J].International Journal of Hydrogen Energy, 2007, 32:3274-3283.
    [33] HAN W, WANG B, ZHOU Y, et al. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor [J]. Bioresource Technology, 2012, 110: 219-223.
  • 加载中
计量
  • 文章访问数:  401
  • HTML全文浏览数:  351
  • PDF下载数:  414
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-05
  • 刊出日期:  2016-04-15

低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气

  • 1. 东北林业大学林学院, 哈尔滨, 150040
基金项目:

中央高校基本科研业务费专项资金项目(2572015AA17)和黑龙江省自然科学基金(E201354)资助.

摘要: 采用由有机玻璃制成的上流式厌氧污泥床反应器(UASB),以糖蜜废水为发酵底物,投加适量氯化铵和磷酸二氢钾,研究在低pH值下系统的产氢性能.在系统启动初期,投加碳酸氢钠控制进水pH=6.75—7.15,使系统处于中性厌氧发酵,固定进水COD为4000 mg·L-1,HRT=8 h.系统运行20 d后,系统处于混合型发酵类型,随后停止投加碳酸氢钠.系统经过45 d的运行,乙醇和乙酸浓度占总浓度的79.39%,而丙酸的浓度只占总浓度的10.89%,形成了稳定的典型乙醇型发酵.第65天,乙醇和乙酸的浓度分别为840.56 mg·L-1、403.12 mg·L-1,乙醇与乙酸浓度占总浓度的93.2%,氢气含量为86.97%.在出水pH=2.81时,系统产氢性能最佳.氢气产率为2.079 mmol·L-1·h-1,氢气产量1.12 m3·m-3·d-1,氢气含量91.46%,是稳定期氢气含量的1.65倍.

English Abstract

参考文献 (33)

目录

/

返回文章
返回