砷对绿藻的毒性效应及氧化还原条件的影响

丁腾达, 阚啸林, 吴振华, 冯雪娇, 尹钢, 倪婉敏. 砷对绿藻的毒性效应及氧化还原条件的影响[J]. 环境化学, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
引用本文: 丁腾达, 阚啸林, 吴振华, 冯雪娇, 尹钢, 倪婉敏. 砷对绿藻的毒性效应及氧化还原条件的影响[J]. 环境化学, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
DING Tengda, KAN Xiaolin, WU Zhenhua, FENG Xuejiao, YIN Gang, NI Wanmin. Toxicity of arsenic on green algae and its effect on redox conditions[J]. Environmental Chemistry, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
Citation: DING Tengda, KAN Xiaolin, WU Zhenhua, FENG Xuejiao, YIN Gang, NI Wanmin. Toxicity of arsenic on green algae and its effect on redox conditions[J]. Environmental Chemistry, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101

砷对绿藻的毒性效应及氧化还原条件的影响

  • 基金项目:

    国家自然科学基金(41503082)资助.

Toxicity of arsenic on green algae and its effect on redox conditions

  • Fund Project: Supported by the National Natural Science Foundation of China(41503082).
  • 摘要: 选择绿藻中耐毒品种莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,分析三价砷加入对其体系氧化还原条件的影响,研究代表性绿藻莱茵衣藻C. reinhardtii对水体三价砷毒性的响应.结果表明,光照或黑暗条件下莱茵衣藻C. reinhardtii的生长都会使pH升高,氧化还原电位(Eh)减小.根据pH-Eh分析可知,水体三价砷As(Ⅲ)大部分以H2AsO3-存在,H2AsO3-加入后pH升高和Eh减小趋势更为明显,并随其浓度增大,Eh会出现缓慢上升趋势.同时,pH与Eh变化也会影响砷对藻类的毒效应,当pH值为10.0-10.5,Eh为-143- -136 mV时,三价砷浓度增大对藻类生长速率没有明显影响,但当pH值为9.5-10.1,Eh为-156- -143 mV时,三价砷浓度增大会明显降低了藻类生长速率.
  • 加载中
  • [1] LIU C P,LUO C L,YUN G,et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine,southern China[J]. Environmental Pollution,2010,158: 820-826.
    [2] MANDAL S,PADHI T,PATEL R K. Studies on the removal of arsenic (Ⅲ) from water by a novel hybrid material[J]. Journal of Hazardous Materials,2011,192: 899-908.
    [3] 朱晓龙,刘妍,甘国娟,等. 湘中某工矿区土壤及作物砷污染特征及其健康风险评价[J]. 环境化学,2014,33(9): 1462-1468.

    ZHU X L,LIU Y,GAN G J,et al. Arsenic contamination and assessment of potential human health risk of soil and crops systems at an industrial and mining area in central Hunan[J]. Environmental Chemistry,2014,33(9): 1462-1468(in Chinese).

    [4] CHANG J S,REN X H,WOONG K K. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines[J]. Journal of Environmental Science,2008,20: 1348-1355.
    [5] SCHALLER J,MKANDAWIRE M,DUDEL E G. Heavy metals and arsenic fixation into freshwater organic matter under Gammarus pulex L. influence[J]. Environmental Pollution,2010,158: 2454-2458.
    [6] HANSEN H K,RIBEIRO A,MATEUS E. Biosorption of arsenic(V) with Lessonia nigrescens[J]. Minerals Engineering,2006,19: 486-490.
    [7] TUZEN M,SARI A,MENDIL D,et al. Characterization of biosorption process of As(Ⅲ) on green algae Ulothrix cylindricum[J]. Journal of Hazardous Materials,2009,165:566-572.
    [8] TUAN L Q,HUONG T T T,HONG P T A,et al. Arsenic (V) induces a fluidization of algal cell and liposome membranes[J]. Toxicology in Vitro,2008,22: 1632-1638.
    [9] MUDHOO A,SHARMA S K,GARG V K,et al. Arsenic: an overview of applications,health,and environmental concerns and removal processes[J]. Critical Reviews in Environmental Science and Technology,2011,41: 435-519.
    [10] KARADJOVA I B,SLAVEYKOVA V I,TSALEV D L. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater[J]. Aquatic Toxicology,2008,87: 264-271.
    [11] GUO P,GONG Y,WANG C,et al. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes[J]. Environmental Toxicology and Chemistry,2011,30(8): 1754-1759.
    [12] WANG S,MULLIGAN C N. Occurrence of arsenic contamination in Canada: 3127 sources,behavior and distribution[J]. Science of the Total Environment,2006,366: 701-721.
    [13] ZHANG J Y,DING T D,ZHANG C L. Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda[J]. Chemosphere,2013,92: 1077-1084.
    [14] FLOUTY R,ESTEPHANE G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study[J]. Journal of Environmental Management,2012,111: 106-114.
    [15] JESPERSEN A M,CHRISTOFFERSEN K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent[J]. Archiv Fur Hydrobiologie,1987,109: 445-454.
    [16] WEISS-MAGASIC C,LUSTIGMAN B,LEE L H. Effect of mercury on the growth of Chlamydomonas reinhardtii[J]. Bulletin of Environmental Contamination and Toxicology,1997,59: 828-833.
    [17] LU P,ZHU C. Arsenic Eh-pH diagrams at 25℃ and 1 bar[J]. Environmental Earth and Science,2011,62: 1673-1683.
    [18] BARD AJ,PARSONS R,JORDAN J. Standard Potentials in Aqueous Solution[M],Marcel Dekker: New York,1985.
    [19] HOFFMANN H,SCHENK M K. Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo[J]. Environmental Pollution,2011,159: 2398-2404.
    [20] LUSTIGMAN B,LEE LH,WEISS-MAGASIC C. Effect of cobalt and pH on the growth of Chlamydomonas reinhardtii[J]. Bulletin of Environmental Contamination and Toxicology,1995,55: 65-72.
    [21] LEE L H,LUSTIGMAN B,CHU I,et al. Effect of aluminum and pH on the growth of Anacystis nidulans[J]. Bulletin of Environmental Contamination and Toxicology,1991,46: 720-726.
    [22] WANG N X,HUANG B,XU S,et al. Effects of nitrogen and phosphrous on arsenite accumulation,oxidation,and toxicity in Chlamydomonas reinhardtii[J]. Aquatic Toxicology,2014,157: 167-174.
    [23] WANG N X,LI Y,DENG X H,et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research,2013,47: 2497-2506.
  • 加载中
计量
  • 文章访问数:  975
  • HTML全文浏览数:  905
  • PDF下载数:  632
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-21
  • 刊出日期:  2016-05-15
丁腾达, 阚啸林, 吴振华, 冯雪娇, 尹钢, 倪婉敏. 砷对绿藻的毒性效应及氧化还原条件的影响[J]. 环境化学, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
引用本文: 丁腾达, 阚啸林, 吴振华, 冯雪娇, 尹钢, 倪婉敏. 砷对绿藻的毒性效应及氧化还原条件的影响[J]. 环境化学, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
DING Tengda, KAN Xiaolin, WU Zhenhua, FENG Xuejiao, YIN Gang, NI Wanmin. Toxicity of arsenic on green algae and its effect on redox conditions[J]. Environmental Chemistry, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101
Citation: DING Tengda, KAN Xiaolin, WU Zhenhua, FENG Xuejiao, YIN Gang, NI Wanmin. Toxicity of arsenic on green algae and its effect on redox conditions[J]. Environmental Chemistry, 2016, 35(5): 1084-1089. doi: 10.7524/j.issn.0254-6108.2016.05.2015112101

砷对绿藻的毒性效应及氧化还原条件的影响

  • 1.  深圳大学化学与环境工程学院, 深圳, 518060;
  • 2.  中钢集团马鞍山矿山研究院有限公司, 马鞍山, 243000;
  • 3.  东阳市环境保护监测站, 东阳, 322100;
  • 4.  江西省科学院科技战略研究所, 南昌, 330096;
  • 5.  浙江外国语学院科学技术学院化学系, 杭州, 310012
基金项目:

国家自然科学基金(41503082)资助.

摘要: 选择绿藻中耐毒品种莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,分析三价砷加入对其体系氧化还原条件的影响,研究代表性绿藻莱茵衣藻C. reinhardtii对水体三价砷毒性的响应.结果表明,光照或黑暗条件下莱茵衣藻C. reinhardtii的生长都会使pH升高,氧化还原电位(Eh)减小.根据pH-Eh分析可知,水体三价砷As(Ⅲ)大部分以H2AsO3-存在,H2AsO3-加入后pH升高和Eh减小趋势更为明显,并随其浓度增大,Eh会出现缓慢上升趋势.同时,pH与Eh变化也会影响砷对藻类的毒效应,当pH值为10.0-10.5,Eh为-143- -136 mV时,三价砷浓度增大对藻类生长速率没有明显影响,但当pH值为9.5-10.1,Eh为-156- -143 mV时,三价砷浓度增大会明显降低了藻类生长速率.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回