施用给水厂残泥对土壤中草甘膦降解的影响

赵媛媛, 裴元生, 向仁军, 成应向. 施用给水厂残泥对土壤中草甘膦降解的影响[J]. 环境化学, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
引用本文: 赵媛媛, 裴元生, 向仁军, 成应向. 施用给水厂残泥对土壤中草甘膦降解的影响[J]. 环境化学, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
ZHAO Yuanyuan, PEI Yuansheng, XIANG Renjun, CHENG Yingxiang. Effect of drinking water treatment residual amendment on glyphosate degradation in soil[J]. Environmental Chemistry, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
Citation: ZHAO Yuanyuan, PEI Yuansheng, XIANG Renjun, CHENG Yingxiang. Effect of drinking water treatment residual amendment on glyphosate degradation in soil[J]. Environmental Chemistry, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602

施用给水厂残泥对土壤中草甘膦降解的影响

  • 基金项目:

    国家国际科技合作专项(2013DFG91190)资助.

Effect of drinking water treatment residual amendment on glyphosate degradation in soil

  • Fund Project: Supported by the International Science and Technology Cooperation Program of China (2013DFG91190).
  • 摘要: 给水厂残泥(WTR)已被证实为安全废弃物,掺杂WTR能显著增强土壤对有机磷农药草甘膦的吸附容量与稳定性,与此同时,WTR的掺杂可能会进一步影响土壤中草甘膦的降解行为.本研究通过单次与重复施加草甘膦实验,从土壤中草甘膦及其代谢产物的残留特征、土壤酶活性和总菌丰度等3个方面,对比分析了WTR掺杂对土壤中草甘膦降解的影响.实验结果表明,单次施加草甘膦条件下,掺杂WTR不会影响草甘膦的降解,反而能降低草甘膦在降解过程中的迁移能力,缓解高浓度草甘膦对土壤磷酸酶和脱氢酶的抑制作用,提高土壤微生物丰度;短时间(21 d)内重复施加草甘膦会导致土壤中草甘膦与AMPA的积累,同时,掺杂WTR,特别是当掺杂量≥5%时,将造成草甘膦积累量进一步增加,但其在WTR土壤具有较高稳定性,二次释放风险小.总体而言,与短时间内频繁使用大量草甘膦的农业区相比,在施用草甘膦时间间隔较长的农业区,掺杂WTR能大大降低草甘膦在降解过程中由土壤向水体迁移的风险.
  • 加载中
  • [1] CUHRA M, TRAAVIK T, BØHN T. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna[J]. Ecotoxicology, 2013, 22(2): 251-262.
    [2] JONES D K, HAMMOD J I, RELYEA R A. Competitive stress can make the herbicide Roundup® more deadly to larval amphibians[J]. Environmental Toxicology and Chemistry, 2011, 30(2): 446-454.
    [3] GASNIER C, DUMONT C, BENACHOUR N, et al. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines[J]. Toxicology, 2009, 262(3): 184-191.
    [4] PIOLA L, FUCHS J, ONETO M L, et al. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions[J]. Chemosphere, 2013, 91(4): 545-551.
    [5] BATTAGLIN W, MEYER M, KUIVILA K, et al. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation[J]. Journal of the American Water Resources Association, 2014, 50(2): 275-290.
    [6] GIESY J, DOBSON S, SOLOMON K. Ecotoxicological risk assessment for Roundup® herbicide//Ware G W (Ed.), Reviews of Environmental Contamination and Toxicology[M]. New York: Soil Science Society of America. Inc., Springer, 2000:35-120.
    [7] LIU J, TZOU Y, LU Y, et al. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment[J]. Journal of Hazardous Materials, 2010, 177(1): 692-696.
    [8] ASKEW S, WILCUT J. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum)[J]. Weed Technology, 1999, 13(2): 308-313.
    [9] BARRETT K, MCBRIDE M. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide[J]. Environmental Science and Technology, 2006, 39(23):9223-9228.
    [10] ASLAM S, BENOIT P, CHABAUTY F, et al. Modelling the impacts of maize decomposition on glyphosate dynamics in mulch[J]. European Journal of Soil Science, 2014, 65(2):231-247.
    [11] BOTT S, TESFAMARIAM T, KANIA A, et al. Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation[J]. Plant and Soil, 2011, 342(342): 249-263.
    [12] GJETTERMANN B, PETERSEN C, HANSEN S, et al. Kinetics of glyphosate desorption from mobilized soil particles[J]. Soil Science Society of America Journal, 2011, 75(2): 434-443.
    [13] WANG C H, Pei Y S, ZHAO Y Y. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals[J]. Journal of Environmental Science and Health Part A, 2015, 50(2):135-143.
    [14] BABATUNDE A, ZHAO Y. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses[J]. Critical Reviews in Environmental Science and Technology, 2007, 37(2):129-164.
    [15] HU Y, Zhao Y, SOROHAN B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual[J]. Desalination, 2011, 271(s1-3):150-156.
    [16] ZHAO Y Y, WENDLING L, WANG C H, et al. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils[J]. Journal of Environmental Sciences, 2015, 34(8):133-142.
    [17] 冯爱青,张民,李成亮,等. 秸秆及秸秆黑炭对小麦养分吸收及棕壤酶活性的影响[J]. 生态学报, 2015, 35(15): 5269-5277.

    FENG A Q,ZHANG M,LI C L,et al. Effects of straw and straw biochar on wheat nutrient uptake and enzyme activity in brown soil[J]. Acta Ecologica Sinica, 2015, 35(15):5269-5277(in Chinese).

    [18] 许皋,杜孟庸,周健学,等. 有机物料对土壤酶活性影响的关连度分析[J]. 土壤通报, 1994, 25(2), 62-64.

    XU G, DU M Y, ZHOU J X, et al. Association analysis of organic materials' effects on soil enzyme activity[J]. Chinese Journal of Soil Science, 1994, 25(2): 62-64(in Chinese).

    [19] 王艳. 不同有机物料对有机磷农药污染土壤酶活性及土壤微生物量的影响[J]. 生态环境学报, 2014, 23(7): 1205-1209.

    WANG Y. Effect of organic materials on soil Microbial biomass and soil enzyme in the soils contaminated by organophosphorus pesticides[J]. Ecology and Environmental Sciences, 2014, 23(7): 1205-1209(in Chinese).

    [20] 柳勇. 有机碳源促进土壤中五氯酚还原降解的生物化学机制[D]. 杭州:浙江大学博士论文, 2013. LIU Y. Biochemical mechanisms of pentachlorophenol reductive degradation stimulated by organic carbon sources in the soil[D]. Hangzhou: Zhejiang University,2013(in Chinese).
    [21] 周震峰, 张海光, 王茜. 生物炭对邻苯二甲酸二甲酯在土壤中自然降解和吸附行为的影响[J]. 环境工程学报, 2014, 8(10): 4474-4479.

    ZHOU Z F, ZHANG H G, WANG Q. Effect of natural degradation and adsorption of dimethyl phthalate by adding biochar to soil[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4474-4479(in Chinese).

    [22] 尹春芹, 蒋新, 王芳, 等. 不同碳源刺激对老化污染土壤中PAHs降解研究[J]. 环境科学, 2012, 33(2): 633-639.

    YIN C Q, JIANG X, WANG F, et al. Study on degradation of polycyclic aromatic hydrocarbons (PAHs) with different additional carbon sources in aged contaminated soil[J]. Environmental Science, 2012, 33(2): 633-639(in Chinese).

    [23] GÓMEZ I, RODRÍGUEZ-MORGADO B, PARRADO J, et al. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology[J]. Journal of Hazardous Materials, 2014, 273:207-214.
    [24] SHANG C, ZELAZNY L W. Selective dissolution techniques for mineral analysisof soils and sediments//Ulery A L, DreesL R(Eds.), Methods of Soil Analysis.Part 5-Mineralogical Methods[M]. Madison:Soil Science Society of America. Inc., Chapter 3. SHARMA S K, SANGHI R. Wastewater Reuse and Management, Springer, 2013:33-80.
    [25] NELSON D W, SOMMERS L E. Total carbon, organic carbon and organic matter//SPARKS D L, PAGE A L, HELMKE P A, et al. Methods of Soil Analysis, Part 3. Chemical Methods[M]. Madison: American Society of Agronomy, 1996:961-1010.
    [26] MILES C, MOYE H. Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils[J]. Journal of Agricultural and Food Chemistry, 2002, 36(3): 486-491.
    [27] SCHINNER F, OHLINGER R, KANDELER E, et al. Methods in soil biology[M]. Berlin: Springer-Verlag, 1996.
    [28] 程凤侠,司友斌,刘小红. 铜与草甘膦单一污染和复合污染对水稻土酶活性的影响[J]. 农业环境科学学报, 2009, 28(1):84-88.

    CHENG F X, SI Y B, LIU X H. Effects of both single and combined pollution of copper and glyphosate on enzyme activity in paddy soil[J]. Journal of Agro-Environment Science, 2009, 28(1):84-88(in Chinese).

    [29] WEAVER M, KRUTZ L, ZABLOTOWICZ R, et al. Effects of glyphosate on soil microbial communities and its mineralization in a mississippi soil[J]. Pest Management Science, 2007, 63(4):388-393.
    [30] GLASS R L. Adsorption of glyphosate by soils and clay minerals[J]. Journal of Agricultural and Food Chemistry, 1987, 35(4): 497-500.
  • 加载中
计量
  • 文章访问数:  1047
  • HTML全文浏览数:  1011
  • PDF下载数:  410
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-02-16
  • 刊出日期:  2016-10-15
赵媛媛, 裴元生, 向仁军, 成应向. 施用给水厂残泥对土壤中草甘膦降解的影响[J]. 环境化学, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
引用本文: 赵媛媛, 裴元生, 向仁军, 成应向. 施用给水厂残泥对土壤中草甘膦降解的影响[J]. 环境化学, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
ZHAO Yuanyuan, PEI Yuansheng, XIANG Renjun, CHENG Yingxiang. Effect of drinking water treatment residual amendment on glyphosate degradation in soil[J]. Environmental Chemistry, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602
Citation: ZHAO Yuanyuan, PEI Yuansheng, XIANG Renjun, CHENG Yingxiang. Effect of drinking water treatment residual amendment on glyphosate degradation in soil[J]. Environmental Chemistry, 2016, 35(10): 2079-2088. doi: 10.7524/j.issn.0254-6108.2016.10.2016021602

施用给水厂残泥对土壤中草甘膦降解的影响

  • 1.  湖南省环境保护科学研究院, 水污染控制技术湖南省重点实验室, 长沙, 410004;
  • 2.  北京师范大学环境学院, 教育部水沙科学重点实验室, 北京, 100875
基金项目:

国家国际科技合作专项(2013DFG91190)资助.

摘要: 给水厂残泥(WTR)已被证实为安全废弃物,掺杂WTR能显著增强土壤对有机磷农药草甘膦的吸附容量与稳定性,与此同时,WTR的掺杂可能会进一步影响土壤中草甘膦的降解行为.本研究通过单次与重复施加草甘膦实验,从土壤中草甘膦及其代谢产物的残留特征、土壤酶活性和总菌丰度等3个方面,对比分析了WTR掺杂对土壤中草甘膦降解的影响.实验结果表明,单次施加草甘膦条件下,掺杂WTR不会影响草甘膦的降解,反而能降低草甘膦在降解过程中的迁移能力,缓解高浓度草甘膦对土壤磷酸酶和脱氢酶的抑制作用,提高土壤微生物丰度;短时间(21 d)内重复施加草甘膦会导致土壤中草甘膦与AMPA的积累,同时,掺杂WTR,特别是当掺杂量≥5%时,将造成草甘膦积累量进一步增加,但其在WTR土壤具有较高稳定性,二次释放风险小.总体而言,与短时间内频繁使用大量草甘膦的农业区相比,在施用草甘膦时间间隔较长的农业区,掺杂WTR能大大降低草甘膦在降解过程中由土壤向水体迁移的风险.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回