河口无机碳水样保存方法及CO2分压优化计算——以长江口为例

刘鹏飞, 翟惟东. 河口无机碳水样保存方法及CO2分压优化计算——以长江口为例[J]. 环境化学, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
引用本文: 刘鹏飞, 翟惟东. 河口无机碳水样保存方法及CO2分压优化计算——以长江口为例[J]. 环境化学, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
LIU Pengfei, ZHAI Weidong. Optimization of estuarine inorganic carbon water sample storage technique and pCO2 calculation: A case study in the inner Changjiang (Yangtze River) Estuary[J]. Environmental Chemistry, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
Citation: LIU Pengfei, ZHAI Weidong. Optimization of estuarine inorganic carbon water sample storage technique and pCO2 calculation: A case study in the inner Changjiang (Yangtze River) Estuary[J]. Environmental Chemistry, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701

河口无机碳水样保存方法及CO2分压优化计算——以长江口为例

  • 基金项目:

    海洋公益性行业科研专项(201505003)和近海海洋环境科学国家重点实验室(厦门大学)访问学者基金(MELRS1504)资助.

Optimization of estuarine inorganic carbon water sample storage technique and pCO2 calculation: A case study in the inner Changjiang (Yangtze River) Estuary

  • Fund Project: Supported by the Oceanic Public Science and Technology Research Funds Projects (201505003) and the Visiting Fellowship in the State Key Laboratory of Marine Environmental Science (Xiamen University)(MELRS1504).
  • 摘要: 为了探索河口淡水端无机碳水样的保存方法,于2015年3月和7月在长江口淡水端及相邻的河海水混合区域,分别用涂敷特氟龙(Teflon)材料的250 mL具磨口塞玻璃瓶和60 mL硼硅酸盐螺口玻璃瓶采集无机碳水样,检验水样在长期储存过程中的稳定性.实验结果表明,用涂敷特氟龙的玻璃瓶保存河口淡水端无机碳水样在70 d内可维持稳定,溶解无机碳(DIC)和总碱度(TAlk)的均值变化大都少于10 μmol·kg-1.而用60 mL硼硅酸玻璃瓶保存的河口淡水端无机碳水样,其DIC浓度在20 d可下降20-92 μmol·kg-1,70 d平均下降速率可达0.9-2.6 μmol·kg-1·d-1.因此,对于河口淡水端的水样,若不能保证在一周内分析测定,就应该使用涂敷特氟龙的250 mL玻璃瓶作为保存容器.此外,利用长江口区域实测的DIC与TAlk计算的原位CO2分压结果与过去用水-气平衡法走航观测的结果接近,而用pH和DIC或用pH和TAlk数据计算得到的CO2分压则明显偏高.
  • 加载中
  • [1] AUFDENKAMPE A K, MAYORGA E, RAYMOND P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[J]. Frontiers in Ecology and the Environment, 2011, 9(1): 53-60.
    [2] RINGER P, FRIEDLINGSTEIN P, CIAIS P. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6: 597-607.
    [3] BORGES A V, ABRIL G. Carbon dioxide and methane dynamics in estuaries[C]. Wolanski E, McLusky D S. Treatise on Estuarine and Coastal Science-Volume 5: Biogeochemistry. Waltham: Academic Press, 2011, 119-161.
    [4] CHEN C T A, HUANG T H, CHEN Y C et al. Air-sea exchanges of CO2 in the world's coastal seas[J]. Biogeosciences, 2013, 10: 6509-6544.
    [5] FRANKIGNOULLE M, BORGES A, BIONDO R. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments[J]. Water Research, 2001, 35: 1344-1347.
    [6] LI S Y, LU X X, HE M, et al. Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China[J]. Journal of Hydrology, 2012, 466-467: 141-150.
    [7] 祁第, 翟惟东, 陈能汪, 等. 九龙江的碳酸盐体系、CO2分压及调控[J]. 地球与环境, 2014, 42(3): 286-296.

    QI D, ZHAI W D, CHEN N W, et al. Carbonate system and partial pressure of CO2 in the subtropical Jiulongjiang River, China: A discussion on controlling mechanisms[J]. Earth and Environment, 2014, 42(3): 286-296(in Chinese).

    [8] RAN L, LU X X, RICHEY J E, et al. Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China[J]. Biogeosciences, 2015, 12: 921-932.
    [9] SCHOCK M R, SCHOCK S C. Effect of container type on pH and alkalinity stability[J]. Water Research, 1982, 16(10): 1455-1464.
    [10] HUANG W J, WANG Y C, CAI W J. Assessment of sample storage techniques for total alkalinity and dissolved inorganic carbon in seawater[J]. Limnology and Oceanography: Methods, 2012, 10(9): 711-717.
    [11] ZHAI W D, CHEN J F, JIN H Y, et al. Spring carbonate chemistry dynamics of surface waters in the northern East China Sea: Water mixing, biological uptake of CO2, and chemical buffering capacity[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 5638-5653.
    [12] ZHAI W D, DAI M H, GUO X H. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River China[J]. Marine Chemistry, 2007, 107(3): 342-356.
    [13] GUO X H, CAI W J, HUANG W J, et al. Carbon dynamics and community production in the Mississippi river plume[J]. Limnology and Oceanography, 2012, 57(1): 1-17.
    [14] GRAN G. Determination of the equivalence point in potentiometric Titrations, Part Ⅱ[J]. Analyst, 1952, 77: 661-671.
    [15] MILLERO F J, GRAHAM T B, HUANG F, et al. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature[J]. Marine Chemistry, 2006, 100(1): 80-94.
    [16] GIESKES M J. Effects of temperature on pH of seawater[J].Limnology and Oceanography, 1969, 14(5): 697-685.
    [17] DICKSON A G. Standard potential of the reaction: AgCl(s)+1/2 H2(g)=Ag (s)+HCl (aq), and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K[J].The Journal of Chemical Thermodynamics 1990, 22(2): 113-127.
    [18] CHAI C, YU Z M, SONG X X, et al. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China[J]. Hydrobiologia, 2006, 563(1): 313-328.
    [19] YU P S, ZHANG H S, ZHENG M H, et al. The partial pressure of carbon dioxide and air-sea fluxes of Changjiang River Estuary and adjacent Hangzhou Bay[J]. Acta Oceanologica Sinica, 2013, 32(6): 13-17.
    [20] GUO X H, ZHAI W D, DAI M H, et al. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations[J]. Biogeosciences, 2015, 12(18): 5495-5514.
    [21] DICKSON A G. The measurement of seawater pH[J]. Marine Chemistry, 1993, 44(2-4): 131-142.
    [22] COVINGTON A K, WHALLEY P D, DAVISON W. Procedures for the measurement of pH in low ionic-strength solutions including freshwater[J]. Analyst, 1983, 108: 1528-1532.
    [23] MARION G M, MILLERO F J, CAMOES M F, et al. pH of seawater[J]. Marine Chemistry, 2011, 126: 89-96.
  • 加载中
计量
  • 文章访问数:  1642
  • HTML全文浏览数:  1557
  • PDF下载数:  410
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-07
  • 刊出日期:  2016-10-15
刘鹏飞, 翟惟东. 河口无机碳水样保存方法及CO2分压优化计算——以长江口为例[J]. 环境化学, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
引用本文: 刘鹏飞, 翟惟东. 河口无机碳水样保存方法及CO2分压优化计算——以长江口为例[J]. 环境化学, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
LIU Pengfei, ZHAI Weidong. Optimization of estuarine inorganic carbon water sample storage technique and pCO2 calculation: A case study in the inner Changjiang (Yangtze River) Estuary[J]. Environmental Chemistry, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701
Citation: LIU Pengfei, ZHAI Weidong. Optimization of estuarine inorganic carbon water sample storage technique and pCO2 calculation: A case study in the inner Changjiang (Yangtze River) Estuary[J]. Environmental Chemistry, 2016, 35(10): 2096-2105. doi: 10.7524/j.issn.0254-6108.2016.10.2016030701

河口无机碳水样保存方法及CO2分压优化计算——以长江口为例

  • 1.  上海海洋大学海洋科学学院, 上海, 201306;
  • 2.  国家海洋环境监测中心, 大连, 116023
基金项目:

海洋公益性行业科研专项(201505003)和近海海洋环境科学国家重点实验室(厦门大学)访问学者基金(MELRS1504)资助.

摘要: 为了探索河口淡水端无机碳水样的保存方法,于2015年3月和7月在长江口淡水端及相邻的河海水混合区域,分别用涂敷特氟龙(Teflon)材料的250 mL具磨口塞玻璃瓶和60 mL硼硅酸盐螺口玻璃瓶采集无机碳水样,检验水样在长期储存过程中的稳定性.实验结果表明,用涂敷特氟龙的玻璃瓶保存河口淡水端无机碳水样在70 d内可维持稳定,溶解无机碳(DIC)和总碱度(TAlk)的均值变化大都少于10 μmol·kg-1.而用60 mL硼硅酸玻璃瓶保存的河口淡水端无机碳水样,其DIC浓度在20 d可下降20-92 μmol·kg-1,70 d平均下降速率可达0.9-2.6 μmol·kg-1·d-1.因此,对于河口淡水端的水样,若不能保证在一周内分析测定,就应该使用涂敷特氟龙的250 mL玻璃瓶作为保存容器.此外,利用长江口区域实测的DIC与TAlk计算的原位CO2分压结果与过去用水-气平衡法走航观测的结果接近,而用pH和DIC或用pH和TAlk数据计算得到的CO2分压则明显偏高.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回