小浪底水库鱼体和沉积物中汞稳定同位素组成特征

花秀兵, 毛宇翔, 刘洪伟, 程柳, 史建波, 江桂斌. 小浪底水库鱼体和沉积物中汞稳定同位素组成特征[J]. 环境化学, 2016, 35(11): 2245-2252. doi: 10.7524/j.issn.0254-6108.2016.11.2016032201
引用本文: 花秀兵, 毛宇翔, 刘洪伟, 程柳, 史建波, 江桂斌. 小浪底水库鱼体和沉积物中汞稳定同位素组成特征[J]. 环境化学, 2016, 35(11): 2245-2252. doi: 10.7524/j.issn.0254-6108.2016.11.2016032201
HUA Xiubing, MAO Yuxiang, LIU Hongwei, CHENG Liu, SHI Jianbo, JIANG Guibin. Characteristics of stable mercury isotopic compositions in fish and sediments from Xiaolangdi Reservoir[J]. Environmental Chemistry, 2016, 35(11): 2245-2252. doi: 10.7524/j.issn.0254-6108.2016.11.2016032201
Citation: HUA Xiubing, MAO Yuxiang, LIU Hongwei, CHENG Liu, SHI Jianbo, JIANG Guibin. Characteristics of stable mercury isotopic compositions in fish and sediments from Xiaolangdi Reservoir[J]. Environmental Chemistry, 2016, 35(11): 2245-2252. doi: 10.7524/j.issn.0254-6108.2016.11.2016032201

小浪底水库鱼体和沉积物中汞稳定同位素组成特征

  • 基金项目:

    国家973计划项目(2013CB430004)和国家自然科学基金(41422306,21120102040)资助.

Characteristics of stable mercury isotopic compositions in fish and sediments from Xiaolangdi Reservoir

  • Fund Project: Supported by the National Basic Research Program of China (2013CB430004) and the National Natural Science Foundation of China (41422306, 21120102040).
  • 摘要: 使用多接收器电感耦合等离子体质谱仪(MC-ICP-MS)测定了小浪底水库鱼体和沉积物中汞同位素的组成.结果显示,小浪底水库鱼体具有偏负的δ202Hg和偏正的Δ199Hg(δ202Hg:-0.26‰±0.30‰;Δ199Hg:0.79‰±0.08‰),而沉积物比鱼体具有更加偏负的δ202Hg和趋近于0值的Δ199Hg(δ202Hg:-1.48‰±0.38‰;Δ199Hg:0.01‰±0.02‰).与以往的研究相比,小浪底水库鱼体内汞同位素特征与淡水水库区域鱼体中类似,而Δ199Hg/Δ201Hg的比值为1.22,表明小浪底水库鱼体内汞的非质量分馏主要是甲基汞的光化学降解产生的;沉积物的同位素特征表明其受到了人为源排放的影响.鱼体内δ15N数据表明在营养转移的过程中会发生质量分馏,但不会发生非质量分馏.
  • 加载中
  • [1] SELIN N E. Global biogeochemical cycling of mercury:A review[J]. Annual Review of Environment and Resources,2009,34(1):43-63.
    [2] FENG X B, JIANG H M, QIU G L, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution,2009,157(11):2970-2984.
    [3] BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in earth and environmental sciences[J]. Annu Rev Earth Planet Sci,2014,42:249-269.
    [4] FOUCHER D, HINTELMANN H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2006,384(7-8):1470-1478.
    [5] LAURETTA D S, KLAUE B, BLUM J D, et al. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,2001,65(16):2807-2818.
    [6] BERGQUIST B A, BLUM J D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science,2007,318(5849):417-420.
    [7] DAS R, SALTERS V J, ODOM A L. A case for in vivo mass-independent fractionation of mercury isotopes in fish[J]. Geochemistry, Geophysics, Geosystems,2009,10(11):337-343.
    [8] PERROT V, EPOV V N, PASTUKHOV M V, et al. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal-Angara River using Hg isotopic composition[J]. Environmental Science & Technology,2010,44(21):8030-8037.
    [9] SENN D B, CHESNEY E J, BLUM J D, et al. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern gulf of Mexico[J]. Environmental Science & Technology,2010,44(5):1630-1637.
    [10] JACKSON T A, WHITTLE D M, EVANS M S, et al. Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems[J]. Applied Geochemistry,2008,23(3):547-571.
    [11] BLUM J D, POPP B N, DRAZEN J C, et al. Methylmercury production below the mixed layer in the North Pacific Ocean[J]. Nature Geoscience,2013,6(10):879-884.
    [12] BESSINGER B A. Use of stable isotopes to identify sources of mercury in sediments:A review and uncertainty analysis[J]. Environmental Forensics,2014,15(3):265-280.
    [13] YIN R S, FENG X B, CHEN B W,et al. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using hg isotopic composition[J]. Environmental Science & Technology,2015,49(3):1347-1355.
    [14] 李中锋. 治理黄河的关键工程——小浪底水利枢纽[J]. 工程研究:跨学科视野中的工程,2009,1(3):265-274.

    LI Z F. A crucial project for harnessing the Yellow River:Xiaolangdi multi-purpose dam project[J]. Journal of Engineering Studies,2009,1(3):265-274(in Chinese).

    [15] YIN R S, FENG X B, FOUCHER D,et al. High precision determination of mercury isotope ratios using online mercury vapor generation system coupled with multicollector inductively coupled plasma-mass spectrometer[J]. Chinese Journal of Analytical Chemistry,2010,38(7):929-934.
    [16] BALOGH S J, TSUI M T K, BLUM J D, et al. Tracking the fate of mercury in the fish and bottom sediments of Minamata bay, Japan, Using Stable Mercury Isotopes[J]. Environmental Science & Technology,2015,49(9):5399-5406.
    [17] SHERMAN L S, BLUM J D. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA[J]. Science of the Total Environment,2013,448:163-175.
    [18] DONOVAN P M, BLUM J D, DEMERS J D, et al. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA[J]. Environmental Science & Technology,2014,48(7):3666-3674.
    [19] 索乾善, 毛宇翔, 张飞鹏, 等小浪底水库鱼体汞的污染现状[J]. 环境化学, 2013,32(11):2030-2036.

    SUO Q S, MAO Y X, ZHANG F P, et al.Mercury contente in the tissue of fish species in Xiaolangdi reservoir[J]. Environmental Chemistry,2013,32(11):2030-2306(in Chinese).

    [20] 程柳, 毛宇翔, 麻冰涓, 等. 小浪底水库沉积物中重金属污染及生态风险评价[J]. 环境化学,2014,33(8):1412-1413.

    CHENG L, MAO Y X, MA B J, et al. Assesment of heavy metal pollution and ecological risk in the sediments of Xiaolangdi reservoir[J]. Environmental Chemistry,2014,33(8):1412-1413(in Chinese).

    [21] LAFFONT L, SNOKE J E, MAURICE L, et al. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon[J]. Environmental Science & Technology,2009,43(23):8985-8990.
    [22] PERROT V, PASTUKHOV M V, EPOV V N,et al. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia)[J]. Environmental Science & Technology,2012,46(11):5902-5911.
    [23] GANTNER N, HINTELMANN H, ZHENG W, et al. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes[J]. Environmental Science & Technology,2009,43(24):9148-9154.
    [24] KWON S Y, BLUM J D, CARVAN M J, et al. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity[J]. Environmental Science & Technology,2012,46(14):7527-7534.
    [25] KWON S Y, BLUM J D, CHIRBY M A, et al. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments[J]. Environmental Toxicology and Chemistry,2013,32(10):2322-2330.
    [26] POINT D, SONKE J E, DAY R D, et al. Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems[J]. Nature Geoscience, 2011,4(3):188-194.
    [27] KRITEE K, BLUM J D, JOHNSON M W, et al. Mercury stable isotope fractionation during reduction of Hg (Ⅱ) to Hg (0) by mercury resistant microorganisms[J]. Environmental Science & Technology,2007,41(6):1889-1895.
    [28] KRITEE K, BARKAY T, BLUM J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury[J]. Geochimica et Cosmochimica Acta,2009,73(5):1285-1296.
    [29] WIEDERHOLD J G, CRAMER C J, DANIEL K, et al. Equilibrium mercury isotope fractionation between dissolved Hg (Ⅱ) species and thiol-bound Hg[J]. Environmental Science & Technology,2010,44(11):4191-4197.
    [30] JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg (Ⅱ) sorption to goethite[J]. Environmental Science & Technology,2012,46(12):6654-6662.
    [31] ESTRADE N, CARIGNAN J, SONKE J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica et Cosmochimica Acta,2009,73(10):2693-2711.
    [32] GHOSH S, SCHAUBLEA, COULOUME G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology,2013,336:5-12.
    [33] COOKE C A, HOLGER H, AGUE J J, et al. Use and legacy of mercury in the Andes[J]. Environmental Science & Technology,2013,47(9):4181-4188.
    [34] FENG X B, FOUCHER D, HINTELMANN H, et al. Tracing mercury contamination sources in sediments using mercury isotope compositions[J]. Environmental Science & Technology,2010,44(9):3363-3368.
    [35] SMITH C N, KESLER S E, BLUM J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters,2008,269(3):399-407.
    [36] STETSON S J, GRAY J E, WANTY R B, et al. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury[J]. Environmental Science & Technology,2009,43(19):7331-7336.
    [37] YIN R S, FENG X B, WANG J, et al. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China[J]. Chemical Geology,2013,336:80-86.
    [38] GIDEON B, AMRIKA D, JOHNSON T M, et al. Environmental impacts of the tennessee valley authority kingston coal ash spill. 1. Source apportionment using mercury stable isotopes[J]. Environmental Science & Technology,2012,47(4):2092-2099.
    [39] MIL-HOMENS M, BLUM J D, CANARIO J, et al. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin[J]. Chemical Geology,2013,336(1):62-71.
  • 加载中
计量
  • 文章访问数:  840
  • HTML全文浏览数:  735
  • PDF下载数:  581
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-22
  • 刊出日期:  2016-11-15

小浪底水库鱼体和沉积物中汞稳定同位素组成特征

  • 1.  河南理工大学资源环境学院, 焦作, 454000;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

国家973计划项目(2013CB430004)和国家自然科学基金(41422306,21120102040)资助.

摘要: 使用多接收器电感耦合等离子体质谱仪(MC-ICP-MS)测定了小浪底水库鱼体和沉积物中汞同位素的组成.结果显示,小浪底水库鱼体具有偏负的δ202Hg和偏正的Δ199Hg(δ202Hg:-0.26‰±0.30‰;Δ199Hg:0.79‰±0.08‰),而沉积物比鱼体具有更加偏负的δ202Hg和趋近于0值的Δ199Hg(δ202Hg:-1.48‰±0.38‰;Δ199Hg:0.01‰±0.02‰).与以往的研究相比,小浪底水库鱼体内汞同位素特征与淡水水库区域鱼体中类似,而Δ199Hg/Δ201Hg的比值为1.22,表明小浪底水库鱼体内汞的非质量分馏主要是甲基汞的光化学降解产生的;沉积物的同位素特征表明其受到了人为源排放的影响.鱼体内δ15N数据表明在营养转移的过程中会发生质量分馏,但不会发生非质量分馏.

English Abstract

参考文献 (39)

目录

/

返回文章
返回