环糊精的Fenton氧化特性及产物分析

王主华, 李欣萌, 乔显亮, 陈景文, 蔡喜运. 环糊精的Fenton氧化特性及产物分析[J]. 环境化学, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
引用本文: 王主华, 李欣萌, 乔显亮, 陈景文, 蔡喜运. 环糊精的Fenton氧化特性及产物分析[J]. 环境化学, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
WANG Zhuhua, LI Xinmeng, QIAO Xianliang, CHEN Jingwen, CAI Xiyun. Fenton oxidation of cyclodextrin and identification of oxidation products[J]. Environmental Chemistry, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
Citation: WANG Zhuhua, LI Xinmeng, QIAO Xianliang, CHEN Jingwen, CAI Xiyun. Fenton oxidation of cyclodextrin and identification of oxidation products[J]. Environmental Chemistry, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303

环糊精的Fenton氧化特性及产物分析

  • 基金项目:

    公益性行业(农业)科研专项经费项目(201503107),国家自然科学基金(21477013)资助.

Fenton oxidation of cyclodextrin and identification of oxidation products

  • Fund Project: Supported by the Special Scientific Fund for Agro-Scientific Research in the Public Interest (201503107) and National Natural Science Foundation of China (21477013).
  • 摘要: 环糊精因其具有包合增溶特性,单独或与高级氧化技术(如Fenton氧化)耦合可应用于有机污染物的土壤污染修复,然而环糊精的稳定性不清楚.本研究考察了环糊精在Fenton体系中的降解动力学及转化产物,评估了环糊精的稳定性.结果表明,β-环糊精(β-CD)在Fenton体系中反应速率随着过氧化氢浓度的升高而线性增加,符合二级动力学过程.环糊精与羟基自由基反应的绝对速率常数在酸性条件下(pH=3)分别为3.9×109 L·(mol·s)-1(β-CD和甲基β环糊精),6.5×109 L·(mol·s)-1(羟丙基β环糊精),7.2×109 L·(mol·s)-1(γ-环糊精),中性条件下(pH=7)为2.9×109 L·(mol·s)-1(β-CD),3.1×109 L·(mol·s)-1(MCD),3.2×109 L·(mol·s)-1(HPCD),3.3×109 L·(mol·s)-1(γ-CD),显示环糊精在酸性条件下降解加快,且绝对速率常数的种类差别较大,而在中性条件下比较稳定,且种类之间差别不大.产物质谱分析表明,环糊精空腔骨架上的羟基被氧化,生成了含有醛基和羧基氧化产物;反应前后总有机碳含量无明显差别,表明环糊精及产物的空腔结构稳定,未被开环破坏.
  • 加载中
  • [1] AFZAL M, KHAN Q M, SESSITSCH A. Endophytic bacteria:Prospects and applications for the phytoremediation of organic pollutants[J]. Chemosphere, 2014, 117(1):232-242.
    [2] KANG J W. Removing environmental organic pollutants with bioremediation and phytoremediation[J]. Biotechnology Letters, 2014, 36(6):1129-1139.
    [3] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:Principles and applications. A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23):2577-2641.
    [4] 陈雄, 李辉信, 李方卉,等. 多氯联苯污染土壤原位修复技术研究进展[J]. 环境化学, 2014, 33(3):397-403.

    CHEN X, LI H X, LI F H, et al. In situ remediation technologies for PCB contaminated soils[J]. Environmental Chemistry, 2014, 33(3):397-403(in Chinese).

    [5] LI Y, LI F M, LI F X, et al. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil[J]. Environmental Science & Pollution Research, 2015, 22(23):18446-18455.
    [6] RINALDI A, DA SILAV M R. Degradation of BTX in contaminated soil by using hydrogen peroxide (H2O2) and potassium permanganate (KMnO4)[J]. Water, Air, & Soil Pollution, 2011, 217(1-4):245-254.
    [7] VILLA R D, TROVO A G, NOGUEIRA R F P. Soil remediation using a coupled process:Soil washing with surfactant followed by photo-Fenton oxidation[J]. Journal of Hazardous Materials, 2010, 174(1):770-775.
    [8] CHEN M, XU P, ZENG G M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:Applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6):745-755.
    [9] LINDSEY M E, TARR M A. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter[J]. Environmental Science & Technology, 2000, 34(3):444-449.
    [10] LANDY D, MALLARD I, PONCHEL A, et al. Remediation technologies using cyclodextrins:An overview[J]. Environmental Chemistry Letters, 2012, 10(3):225-237.
    [11] LIU H H, CAI X Y, CHEN J W. Mathematical model for cyclodextrin alteration of bioavailability of organic pollutants[J]. Environmental Science & Technology, 2013, 47(11):5835-5842.
    [12] 孔德洋, 高士祥, 林志芬,等. 羧甲基-β-环糊精对土壤中萘的洗脱去除作用[J]. 环境化学, 2001, 20(5):483-489.

    KONG D Y, GAO S X, LIN Z F, et al. Removal of naphthalene from soil with carboxymethyl-β-cyclodextrin[J]. Environmental Chemistry, 2001, 20(5):483-489(in Chinese).

    [13] LINDSEY M E, XU G, LU J, et al. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins[J]. Science of the Total Environment, 2003, 307(1-3):215-29.
    [14] VEIGNIE E, RAFIN C, LANDY D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene[J]. Journal of Hazardous Materials, 2009, 168(2):1296-1301.
    [15] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils:A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2):234-251.
    [16] WANG Q Q, LEMLEY A T. Kinetic model and optimization of 2, 4-D degradation by anodic Fenton treatment[J]. Environmental Science & Technology, 2001, 35(22):4509-4514.
    [17] ORTIZ DE LA PLATA G B, ALFANO O M, CASSANO A E. Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions[J]. Applied Catalysis B:Environmental, 2010, 95(1):1-13.
    [18] 杨玲,赵勇胜,马百文,等.Fenton和类Fenton氧化处理地下水中BTEX及其动力学[J]. 环境工程学报,2011,5(5):992-996.

    YANG L, ZHAO Y S, MA B W, et al. Treatment of BTEX in groundwater by Fentons and Fenton-like oxidation reaction and the kinetics[J]. Chinese Journal of Environmental Engineering, 2011, 5(5):992-996(in Chinese).

    [19] BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research, 2005, 39(1):107-118.
    [20] WU Y Y, ZHOU S Q, QIN F H, et al. Modeling the oxidation kinetics of Fenton's process on the degradation of humic acid[J]. Journal of Hazardous Materials, 2010, 179(1-3):533-539.
    [21] DORFMAN L M, ADAMS G E. National Bureau of Standards Report No[J]. NSRDSNBS-46. Washington, 1973.
    [22] OTURAN N, PANIZZAM, OTURAN M A. Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics[J]. The Journal of Physical Chemistry A, 2009, 113(41):10988-10993.
    [23] DE HEREDIA J B, TORREGROSA J, DOMINGUEZ J R, et al. Kinetic model for phenolic compound oxidation by Fenton's reagent[J]. Chemosphere, 2001, 45(1):85-90.
    [24] SHEMER H, SHARPLESS C M, ELOVITZ M S, et al. Relative rate constants of contaminant candidate list pesticides with hydroxyl radicals[J]. Environmental Science & Technology, 2006, 40(14):4460-4466.
    [25] SONG L, PURDY W C. Cyclodextrins and their applications in analytical chemistry[J]. Chemical Reviews, 2015, 41(16):28-48.
    [26] 袁超,金征宇.羟丙基环糊精性质、应用及前景展望[J]. 粮食与油脂, 2009(1):4-6. YUAN C, JIN Z Y. Property, application and prospect of hydroxypropyl cyclodextrins[J]. Cereals & Oils, 2009

    (1):4-6(in Chinese).

    [27] SZEJTLI J. Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5):1743-1754.
    [28] YARDIN G, CHIRON S. Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin[J]. Chemosphere, 2006, 62(9):1395-1402.
    [29] HANNA K, CHIRON S, OTURAN M A. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation[J]. Water Research, 2005, 39(12):2763-2773.
    [30] ONNITTAN A, SHRESTHA R A, SILLANPAA M. Remediation of hexachlorobenzene in soil by enhanced electrokinetic Fenton process[J]. Journal of Environmental Science and Health Part A, 2008, 43(8):894-900.
    [31] KHAN Z, MANHAS M S, MOHAMMED F. A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 295(1):165-171.
    [32] CAI X Y, LIU Q Q, XIA C L, et al. Recyclable capture and destruction of aqueous micropollutants using the molecule-specific cavity of cyclodextrin polymer coupled with KMnO4 oxidation[J]. Environmental Science & Technology, 2015, 49(15):9264-9272.
    [33] CRINI G. Review:a history of cyclodextrins[J]. Chemical Reviews, 2014, 114(21):10940-10975.
    [34] SKOLD M E, THYNE G D, DREXLER J W, et al. Enhanced solubilization of a metal-organic contaminant mixture (Pb, Sr, Zn, and perchloroethylene) by cyclodextrin[J]. Environmental Science & Technology, 2008, 42(23):8930-8934.
    [35] SKOLD M E, THYNE G D, DREXLER J W, et al. Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD)[J]. Journal of Contaminant Hydrology, 2009, 107(s 3/4):108-113.
  • 加载中
计量
  • 文章访问数:  1262
  • HTML全文浏览数:  1177
  • PDF下载数:  466
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-23
  • 刊出日期:  2016-11-15
王主华, 李欣萌, 乔显亮, 陈景文, 蔡喜运. 环糊精的Fenton氧化特性及产物分析[J]. 环境化学, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
引用本文: 王主华, 李欣萌, 乔显亮, 陈景文, 蔡喜运. 环糊精的Fenton氧化特性及产物分析[J]. 环境化学, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
WANG Zhuhua, LI Xinmeng, QIAO Xianliang, CHEN Jingwen, CAI Xiyun. Fenton oxidation of cyclodextrin and identification of oxidation products[J]. Environmental Chemistry, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303
Citation: WANG Zhuhua, LI Xinmeng, QIAO Xianliang, CHEN Jingwen, CAI Xiyun. Fenton oxidation of cyclodextrin and identification of oxidation products[J]. Environmental Chemistry, 2016, 35(11): 2411-2417. doi: 10.7524/j.issn.0254-6108.2016.11.2016032303

环糊精的Fenton氧化特性及产物分析

  • 1. 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连, 116024
基金项目:

公益性行业(农业)科研专项经费项目(201503107),国家自然科学基金(21477013)资助.

摘要: 环糊精因其具有包合增溶特性,单独或与高级氧化技术(如Fenton氧化)耦合可应用于有机污染物的土壤污染修复,然而环糊精的稳定性不清楚.本研究考察了环糊精在Fenton体系中的降解动力学及转化产物,评估了环糊精的稳定性.结果表明,β-环糊精(β-CD)在Fenton体系中反应速率随着过氧化氢浓度的升高而线性增加,符合二级动力学过程.环糊精与羟基自由基反应的绝对速率常数在酸性条件下(pH=3)分别为3.9×109 L·(mol·s)-1(β-CD和甲基β环糊精),6.5×109 L·(mol·s)-1(羟丙基β环糊精),7.2×109 L·(mol·s)-1(γ-环糊精),中性条件下(pH=7)为2.9×109 L·(mol·s)-1(β-CD),3.1×109 L·(mol·s)-1(MCD),3.2×109 L·(mol·s)-1(HPCD),3.3×109 L·(mol·s)-1(γ-CD),显示环糊精在酸性条件下降解加快,且绝对速率常数的种类差别较大,而在中性条件下比较稳定,且种类之间差别不大.产物质谱分析表明,环糊精空腔骨架上的羟基被氧化,生成了含有醛基和羧基氧化产物;反应前后总有机碳含量无明显差别,表明环糊精及产物的空腔结构稳定,未被开环破坏.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回