环糊精的Fenton氧化特性及产物分析
Fenton oxidation of cyclodextrin and identification of oxidation products
-
摘要: 环糊精因其具有包合增溶特性,单独或与高级氧化技术(如Fenton氧化)耦合可应用于有机污染物的土壤污染修复,然而环糊精的稳定性不清楚.本研究考察了环糊精在Fenton体系中的降解动力学及转化产物,评估了环糊精的稳定性.结果表明,β-环糊精(β-CD)在Fenton体系中反应速率随着过氧化氢浓度的升高而线性增加,符合二级动力学过程.环糊精与羟基自由基反应的绝对速率常数在酸性条件下(pH=3)分别为3.9×109 L·(mol·s)-1(β-CD和甲基β环糊精),6.5×109 L·(mol·s)-1(羟丙基β环糊精),7.2×109 L·(mol·s)-1(γ-环糊精),中性条件下(pH=7)为2.9×109 L·(mol·s)-1(β-CD),3.1×109 L·(mol·s)-1(MCD),3.2×109 L·(mol·s)-1(HPCD),3.3×109 L·(mol·s)-1(γ-CD),显示环糊精在酸性条件下降解加快,且绝对速率常数的种类差别较大,而在中性条件下比较稳定,且种类之间差别不大.产物质谱分析表明,环糊精空腔骨架上的羟基被氧化,生成了含有醛基和羧基氧化产物;反应前后总有机碳含量无明显差别,表明环糊精及产物的空腔结构稳定,未被开环破坏.Abstract: With good inclusion and solubilization properties, cyclodextrins can be used alone or coupled with advanced oxidation technologies (e.g., Fenton) for soil remediation with organic pollutants. However, knowledge about cyclodextrin stability is rare. This study investigated the degradation kinetics of cyclodextrins by Fenton's reagent as well as identified major transformation products. Results showed that the degradation rates of cyclodextrins were linearly correlated with hydrogen peroxide concentration, and the reaction followed the second-order kinetic model. The absolute rate constants of cyclodextrins were respectively 3.9×109 L·(mol·s)-1 (β-CD and MCD), 6.5×109 L·(mol·s)-1 (HPCD), 7.2×109 L·(mol·s)-1 (γ-CD) at pH=3 and 2.9×109 L·(mol·s)-1 (β-CD), 3.1×109 L·(mol·s)-1 (MCD), 3.2×109 L·(mol·s)-1 (HPCD), 3.3×109 L·(mol·s)-1 (γ-CD) at pH=7, showing that cyclodextrins are stable in the neutral condition and differences between them are less varied. Mass spectrometry analysis of the two transformation products showed that several hydroxyl groups in the cavity of cyclodextrins were oxidized to aldehyde and carboxyl groups. Furthermore, identical TOC values of the systems before and after the Fenton reaction indicated that the cavity of natural cyclodextrins and their transformation products was less destructed.
-
Key words:
- cyclodextrin /
- Fenton /
- degradation /
- stability /
- oxidation products
-
-
[1] AFZAL M, KHAN Q M, SESSITSCH A. Endophytic bacteria:Prospects and applications for the phytoremediation of organic pollutants[J]. Chemosphere, 2014, 117(1):232-242. [2] KANG J W. Removing environmental organic pollutants with bioremediation and phytoremediation[J]. Biotechnology Letters, 2014, 36(6):1129-1139. [3] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:Principles and applications. A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23):2577-2641. [4] 陈雄, 李辉信, 李方卉,等. 多氯联苯污染土壤原位修复技术研究进展[J]. 环境化学, 2014, 33(3):397-403. CHEN X, LI H X, LI F H, et al. In situ remediation technologies for PCB contaminated soils[J]. Environmental Chemistry, 2014, 33(3):397-403(in Chinese).
[5] LI Y, LI F M, LI F X, et al. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil[J]. Environmental Science & Pollution Research, 2015, 22(23):18446-18455. [6] RINALDI A, DA SILAV M R. Degradation of BTX in contaminated soil by using hydrogen peroxide (H2O2) and potassium permanganate (KMnO4)[J]. Water, Air, & Soil Pollution, 2011, 217(1-4):245-254. [7] VILLA R D, TROVO A G, NOGUEIRA R F P. Soil remediation using a coupled process:Soil washing with surfactant followed by photo-Fenton oxidation[J]. Journal of Hazardous Materials, 2010, 174(1):770-775. [8] CHEN M, XU P, ZENG G M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:Applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6):745-755. [9] LINDSEY M E, TARR M A. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter[J]. Environmental Science & Technology, 2000, 34(3):444-449. [10] LANDY D, MALLARD I, PONCHEL A, et al. Remediation technologies using cyclodextrins:An overview[J]. Environmental Chemistry Letters, 2012, 10(3):225-237. [11] LIU H H, CAI X Y, CHEN J W. Mathematical model for cyclodextrin alteration of bioavailability of organic pollutants[J]. Environmental Science & Technology, 2013, 47(11):5835-5842. [12] 孔德洋, 高士祥, 林志芬,等. 羧甲基-β-环糊精对土壤中萘的洗脱去除作用[J]. 环境化学, 2001, 20(5):483-489. KONG D Y, GAO S X, LIN Z F, et al. Removal of naphthalene from soil with carboxymethyl-β-cyclodextrin[J]. Environmental Chemistry, 2001, 20(5):483-489(in Chinese).
[13] LINDSEY M E, XU G, LU J, et al. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins[J]. Science of the Total Environment, 2003, 307(1-3):215-29. [14] VEIGNIE E, RAFIN C, LANDY D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene[J]. Journal of Hazardous Materials, 2009, 168(2):1296-1301. [15] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils:A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2):234-251. [16] WANG Q Q, LEMLEY A T. Kinetic model and optimization of 2, 4-D degradation by anodic Fenton treatment[J]. Environmental Science & Technology, 2001, 35(22):4509-4514. [17] ORTIZ DE LA PLATA G B, ALFANO O M, CASSANO A E. Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions[J]. Applied Catalysis B:Environmental, 2010, 95(1):1-13. [18] 杨玲,赵勇胜,马百文,等.Fenton和类Fenton氧化处理地下水中BTEX及其动力学[J]. 环境工程学报,2011,5(5):992-996. YANG L, ZHAO Y S, MA B W, et al. Treatment of BTEX in groundwater by Fentons and Fenton-like oxidation reaction and the kinetics[J]. Chinese Journal of Environmental Engineering, 2011, 5(5):992-996(in Chinese).
[19] BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research, 2005, 39(1):107-118. [20] WU Y Y, ZHOU S Q, QIN F H, et al. Modeling the oxidation kinetics of Fenton's process on the degradation of humic acid[J]. Journal of Hazardous Materials, 2010, 179(1-3):533-539. [21] DORFMAN L M, ADAMS G E. National Bureau of Standards Report No[J]. NSRDSNBS-46. Washington, 1973. [22] OTURAN N, PANIZZAM, OTURAN M A. Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics[J]. The Journal of Physical Chemistry A, 2009, 113(41):10988-10993. [23] DE HEREDIA J B, TORREGROSA J, DOMINGUEZ J R, et al. Kinetic model for phenolic compound oxidation by Fenton's reagent[J]. Chemosphere, 2001, 45(1):85-90. [24] SHEMER H, SHARPLESS C M, ELOVITZ M S, et al. Relative rate constants of contaminant candidate list pesticides with hydroxyl radicals[J]. Environmental Science & Technology, 2006, 40(14):4460-4466. [25] SONG L, PURDY W C. Cyclodextrins and their applications in analytical chemistry[J]. Chemical Reviews, 2015, 41(16):28-48. [26] 袁超,金征宇.羟丙基环糊精性质、应用及前景展望[J]. 粮食与油脂, 2009(1):4-6. YUAN C, JIN Z Y. Property, application and prospect of hydroxypropyl cyclodextrins[J]. Cereals & Oils, 2009 (1):4-6(in Chinese).
[27] SZEJTLI J. Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5):1743-1754. [28] YARDIN G, CHIRON S. Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin[J]. Chemosphere, 2006, 62(9):1395-1402. [29] HANNA K, CHIRON S, OTURAN M A. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation[J]. Water Research, 2005, 39(12):2763-2773. [30] ONNITTAN A, SHRESTHA R A, SILLANPAA M. Remediation of hexachlorobenzene in soil by enhanced electrokinetic Fenton process[J]. Journal of Environmental Science and Health Part A, 2008, 43(8):894-900. [31] KHAN Z, MANHAS M S, MOHAMMED F. A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 295(1):165-171. [32] CAI X Y, LIU Q Q, XIA C L, et al. Recyclable capture and destruction of aqueous micropollutants using the molecule-specific cavity of cyclodextrin polymer coupled with KMnO4 oxidation[J]. Environmental Science & Technology, 2015, 49(15):9264-9272. [33] CRINI G. Review:a history of cyclodextrins[J]. Chemical Reviews, 2014, 114(21):10940-10975. [34] SKOLD M E, THYNE G D, DREXLER J W, et al. Enhanced solubilization of a metal-organic contaminant mixture (Pb, Sr, Zn, and perchloroethylene) by cyclodextrin[J]. Environmental Science & Technology, 2008, 42(23):8930-8934. [35] SKOLD M E, THYNE G D, DREXLER J W, et al. Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD)[J]. Journal of Contaminant Hydrology, 2009, 107(s 3/4):108-113. -

计量
- 文章访问数: 1262
- HTML全文浏览数: 1177
- PDF下载数: 466
- 施引文献: 0