Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响
Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress
-
摘要: 为了解丛枝菌根(AM)真菌对花生抗Cd胁迫的作用及其机理,采用温室盆栽试验,研究了Cd胁迫下接种AM真菌对花生生长、根系形态、Cd吸收及光合生理的影响.结果显示,AM真菌能与花生形成良好的共生关系,施Cd对菌根侵染率无影响;Cd胁迫下接种AM真菌能够显著改善花生生长状况,植株体内P含量与吸收量分别提高1.16-1.52、1.22-1.79倍,叶片叶绿素相对含量平均增幅11.79%,地上部分和根系生物量分别增加7.55%-8.19%、10.86%-14.05%,同时接种处理显著增大了花生根系的根长、根表面积、根体积,降低了植株地上部分Cd含量;对于同一施Cd水平而言,菌根花生叶片的最大光化学效率(Fv/Fm)和潜在光化学效率(Fv/Fo)均显著高于非菌根植株,接种AM真菌使花生叶片的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均显著增大,而胞间CO2浓度(Ci)显著低于不接种处理.研究表明AM真菌可通过改变花生根系的形态结构来吸附固持重金属Cd,从而减少Cd向花生植株地上部分的转移,降低Cd胁迫对花生植株造成的伤害;另一方面,通过提高花生对矿质元素P的吸收来增加植株体内叶绿素含量及改善叶片叶绿素荧光和光合作用,增强花生抗Cd毒害的能力,进而促进花生生长,提高植株生物量.Abstract: In order to understand the effect and mechanism of arbuscular mycorhizal (AM) fungi on cadmium (Cd) stress tolerance of peanut, greenhouse pot culture experiment was conducted to investigate the effect of AM fungi inoculation on the growth, root morphology, Cd uptake and photosynthetic characteristics of peanut plants under Cd stress. The results showed that symbiotic relationships were successfully established between the AM fungi and peanut root under different Cd addition levels. Under Cd stress, compared with non-inoculated plants, AM fungi inoculation significantly improved the growth of peanut plants. The P concentration and uptake of AM fungi inoculated plants increased by 1.16 to 1.52 times and 1.22 to 1.79 times, respectively. The relative chlorophyll content of AM fungi inoculated plants increased by 11.79% on average, the biomass of aboveground and root increased by 7.55%-8.19% and 10.86%-14.05%, respectively, and the root length, surface area and volume increased. The Cd concentration in the aboveground plant parts decreased significantly. Under similar Cd addition level, compared with non-inoculated plants, AM fungi inoculated peanut plants had higher maximum photochemical efficiency (Fv/Fm) and potential photochemical efficiency (Fv/Fo). The net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of AM fungi inoculated peanut leaves increased significantly, and the intercellular CO2 concentration (Ci) of AM fungi inoculated peanut leaves was lower than that of the non-inoculated plants. The results demonstrated that AM fungi could bind and immobilize Cd within the AM fungi-plant root symbiont by changing the root morphology of peanut plants and reducing Cd translocation to the aboveground parts. Furthermore, AM fungi could alleviate the Cd stress damage on peanut plants via improving their leaf chlorophyll content, chlorophyll fluorescence and photosynthesis, and enhance the Cd stress tolerance of peanut plants, resulting in the promotion of host plant growth and the increase of host plant biomass.
-
-
[1] MARQUES A P G C, RANGEL A O S S, CASTRO P M L. Remediation of heavy metal contaminated soils:An overview of site remediation techniques[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(10):879-914. [2] 张磊, 张磊. 螯合剂强化棉花对镉污染土壤修复的初步研究[J]. 水土保持学报, 2015, 29(4):321-326. ZHANG L, ZHANG L. Preliminary study on chelate-enhanced phytoremediation of cadmium-contaminated soil by cotton plants[J]. Journal of Soil and Water Conservation, 2015, 29(4):321-326(in Chinese).
[3] TOPPI L S D, GABBRIELI R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999, 41(2):105-130. [4] SIEDLECKA A, KRUPA Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris[J]. Plant Physiology and Biochemistry, 1996, 34(6):833-841. [5] ZHANG G P, FUKAMI M, SEKIMOTO H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage[J]. Field Crops Research, 2002, 77(2-3):93-98. [6] 杨会玲, 黄仁华, 陈珂, 等. 丛枝菌根真菌(AMF)对铯胁迫宿根高粱生长及根际土壤酶的影响[J]. 环境化学, 2015, 34(4):712-717. YANG H L, HUANG R H, CHEN K, et al. The effects of arbuscular mycorrhizal fungi (AMF) on growth of Sorghum haipense and rhizosphere soil enzymes activities under Cs stress[J]. Environmental Chemistry, 2015, 34(4):712-717(in Chinese).
[7] 王发园, 林先贵. 丛枝菌根在植物修复重金属污染土壤中的作用[J]. 生态学报, 2007, 27(2):793-801. WANG F Y, LIN X G. Role of abuscular mycorrhizae in phytoremediation of heavy metal-contaminated soils[J]. Acta Ecologica Sinica, 2007, 27(2):793-801(in Chinese).
[8] 陆爽, 郭欢, 王绍明, 等. 盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响[J]. 水土保持学报, 2011, 25(2):227-231. LU S, GUO H, WANG S M, et al. Effects of AM fungi on growth and physiological characters of Medicago sativa L. under nacl stress[J]. Journal of Soil and Water Conservation, 2011, 25(2):227-231(in Chinese).
[9] 刘润进, 陈应龙. 菌根学[M]. 北京:科学出版社, 2007. LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing:Science Press, 2007(in Chinese). [10] GAO X P, TENUTA M, FLATEN D N, et al. Cadmium concentration in flax colonized by mycorrhizal fungi depends on soil phosphorus and cadmium concentrations[J]. Communications in Soil Science and Plant Analysis, 2011, 42(15):1882-1897. [11] CARAVACA F, DÍAZ E, BAREA J M, et al. Photosynthetic and transpiration rates of Olea europaea subsp. Sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza[J]. Biologia Plantarum, 2003, 46(4):637-639. [12] ZHU X C, SONG F B, LIU S Q, et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress[J]. Plant and Soil, 2011, 346(1-2):189-199. [13] PUNAMIYA P, DATTA R, SARKAR D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass[Chrysopogon zizanioides (L.)] [J]. Journal of Hazardous Materials, 2010, 177(1-3):465-474. [14] 王姗姗, 王颜红, 张红. 污染花生籽实中镉的分布特征及其对膳食健康的风险分析[J]. 农业环境科学学报, 2007, 26(增刊):12-16. WANG S S, WANG Y H, ZHANG H. Cd-contaminating peanut seeds:distribution characteristics of cadmium and risk assessment on dietary health[J]. Journal of Agro-Environment Science, 2007 , 26(suppl):12-16(in Chinese).
[15] 王凯荣, 张磊. 花生镉污染研究进展[J]. 应用生态学报, 2008, 19(12):2757-2762. WANG K R, ZHANG L. Research advances in cadmium pollution of peanut (Arachis hypogaea L.)[J]. Chinese Journal of Applied Ecology, 2008, 19(12):2757-2762(in Chinese).
[16] 刘文龙, 王凯荣, 王铭伦. 花生对镉胁迫的生理响应及品种间差异[J]. 应用生态学报, 2009, 20(2):451-459. LIU W L, WANG K R, WANG M L. Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress[J]. Chinese Journal of Applied Ecology, 2009, 20(2):451-459(in Chinese).
[17] GAO F, LIN Y J, ZHANG J L, et al. Effects of cadmium stress on physiological characteristics, pod yield, and kernel quality in peanut[J]. Acta Agronomica Sinica, 2012, 37(12):2269-2277. [18] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1):158-161. [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. Lu R K. Analytical methods for soils and agricultural chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese). [20] LEYVAL C, TURNAU K, HASELWANDTER K. Effect of heavy metal pollution on mycorrhizzal colonization and function:Physiological, ecological and applied aspects[J]. Mycorrhiza, 1997, 7(3):139-153. [21] 李霞, 彭霞薇, 伍松林, 等. 丛枝菌根对翅荚木生长及吸收累积重金属的影响[J]. 环境科学, 2014, 35(8):3142-3148. LI X, PENG X W, WU S L, et al. Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis chun seedlings[J]. Chinese Journal of Environmental Science, 2014, 35(8):3142-3148(in Chinese).
[22] 何俊瑜, 任艳芳, 王阳阳, 等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31(2):522-528. HE J Y, REN Y F, WANG Y Y, et al. Root morphological and physiological responses of rice seedlings with different tolerance to cadmium stress[J]. Acta Ecologica Sinica, 2011, 31(2):522-528(in Chinese).
[23] 何俊瑜, 任艳芳, 朱诚, 等. Cd对水稻根尖细胞的遗传损伤效应[J]. 农业环境科学学报, 2008, 27(6):2303-2307. HE J Y, REN Y F, ZHU C, et al. Cytogenetic damage induced by cadmium in rice (Oryza sativa L.) root tips[J]. Journal of Agro-Environment Science, 2008, 27(6):2303-2307(in Chinese).
[24] 罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13):3898-3906. LUO Q Y, WANG X J, LIN S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13):3898-3906(in Chinese).
[25] JANOUŠKOVÁ M, VOSÁTKA M. Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita[J]. Mycorrhiza, 2005, 15(3):217-224. [26] 陈笑莹, 宋凤斌, 朱先灿, 等. 高温胁迫下丛枝菌根真菌对玉米光合特性的影响[J]. 华北农学报, 2013, 28(2):108-113. CHEN X Y, SONG F B, ZHU X C, et al. Effect of arbuscular mycorrhizal fungi on photosynthetic characteristics in maize plants under high temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(2):108-113(in Chinese).
[27] 朱新开, 盛海君, 顾晶, 等. 应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J]. 麦类作物学报, 2005, 25(2):46-50. ZHU X K, SHENG H J, GU J, et al. Primary study on application of SPAD value to estimate chlorophyll and nitrogen content in wheat leaves[J]. Journal of Triticeae Crops, 2005, 25(2):46-50(in Chinese).
[28] 杨虎, 戈长水, 应武, 等. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3):580-587. YANG H, GE C S, YING W, et al. Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3):580-587(in Chinese).
[29] JIANG C D, GAO H Y, ZOU Q. Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves[J]. Photosynthetica, 2003, 41(2):267-271. [30] 陈根云, 陈娟, 许大全. 关于净光合速率和胞间CO2浓度关系的思考[J]. 植物生理学通讯, 2010, 46(1):64-66. CHEN G Y, CHEN J, XU D Q. Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration[J]. Plant Physiology Communications, 2010, 46(1):64-66(in Chinese).
[31] 刘全吉, 孙学成, 胡承孝, 等. 砷对小麦生长和光合作用特性的影响[J]. 生态学报, 2009, 29(2):854-859. LIU Q J, SUN X C, HU C X, et al. Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition[J]. Acta Ecologica Sinica, 2009, 29(2):854-859(in Chinese).
[32] KALAJI H M, LOBODA T. Photosystem Ⅱ of barley seedlings under cadmum and lead stress[J]. Plant Soil and Environment, 2007, 53(12):511-516. [33] 姚广, 高辉远, 王未未, 等. 铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J]. 生态学报, 2009, 29(3):1162-1169. YAO G, GAO H Y, WANG W W, et al. The effects of Pb-stress on functions of photosystems and photosynthetic rate in maize seedling leaves[J]. Acta Ecologica Sinica, 2009, 29(3):1162-1169(in Chinese).
[34] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33:317-345. [35] 孙光闻, 朱祝军, 方学智, 等. 镉对小白菜光合作用及叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2005, 11(5):700-703. SUN G W, ZHU Z J, FANG X Z, et al. Effect of cadmium on photosynthesis and chlorophyll fluorescence of pakchoi[J]. Journal of Plant Nutrition and Fertilizer, 2005, 11(5):700-703(in Chinese).
[36] AUGÉ R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001, 11(1):3-42. [37] ANDRADE S A L D, SILVEIRA A P D D, JORGE R A, et al. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza[J]. International Journal of Phytoremediation, 2008, 10(1):1-13. -

计量
- 文章访问数: 1041
- HTML全文浏览数: 978
- PDF下载数: 352
- 施引文献: 0