基于热脱附-化学电离质谱技术的二次有机气溶胶成分分析和前体物解析

王琳. 基于热脱附-化学电离质谱技术的二次有机气溶胶成分分析和前体物解析[J]. 环境化学, 2016, 35(11): 2227-2233. doi: 10.7524/j.issn.0254-6108.2016.11.2016090909
引用本文: 王琳. 基于热脱附-化学电离质谱技术的二次有机气溶胶成分分析和前体物解析[J]. 环境化学, 2016, 35(11): 2227-2233. doi: 10.7524/j.issn.0254-6108.2016.11.2016090909
WNAG Lin. Chemical analysis and precursor identification of secondary organic aerosols using FIGAERO-CI-ToFMS[J]. Environmental Chemistry, 2016, 35(11): 2227-2233. doi: 10.7524/j.issn.0254-6108.2016.11.2016090909
Citation: WNAG Lin. Chemical analysis and precursor identification of secondary organic aerosols using FIGAERO-CI-ToFMS[J]. Environmental Chemistry, 2016, 35(11): 2227-2233. doi: 10.7524/j.issn.0254-6108.2016.11.2016090909

基于热脱附-化学电离质谱技术的二次有机气溶胶成分分析和前体物解析

  • 基金项目:

    国家自然科学基金(21561130150)资助.

Chemical analysis and precursor identification of secondary organic aerosols using FIGAERO-CI-ToFMS

  • Fund Project: Support by the National Natural Science Foundation of China(21561130150).
  • 摘要: 二次有机气溶胶是大气颗粒物的重要组成部分.有关二次有机气溶胶的分子示踪物、生成机制,以及产率的实验室研究和外场观测工作已在世界各地广泛开展;然而,学术界对二次有机气溶胶的认识仍待进一步加深,以期更为全面地了解二次有机气溶胶生成和消亡的整个大气过程.本课题组拟利用新近发展的热脱附-化学电离-飞行时间质谱技术为主要手段,从新的视角研究二次有机气溶胶的化学物种和形成机制:在烟雾箱中研究一系列生物源和人类源有机化合物与羟基自由基、硝基自由基、以及臭氧的反应,应用热脱附-化学电离-飞行时间质谱技术测定二次有机气溶胶的分子组成特征;在相对污染和相对洁净地区分别组织外场观测,着重于实际大气中二次有机气溶胶的热脱附-化学电离-飞行时间质谱技术的方法发展;实现利用烟雾箱研究获得每个前体物生成的二次有机气溶胶的指纹特征,使用多元线性回归分析技术分析实际大气中的二次有机气溶胶的前体物来源;通过相对污染和相对洁净两个地区的比较,阐明两地的大气颗粒物污染是否在化学组分方面具有类似性而只是具有浓度上的差别,或者两地的大气颗粒物污染是否由于前体物浓度上的差异而已具有化学组分上的非线性差异.
  • 加载中
  • [1] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514:218-222.
    [2] JI D S, LI L, WANG Y S, et al. The heaviest particulate air-pollution episodes occurred in northern China in January, 2013:Insights gained from observation[J]. Atmos Environ, 2014, 92:546-556.
    [3] WANG Y S, YAO L, WANG L, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China[J]. Sci China-Earth Sci, 2014, 57:14-25.
    [4] SUN Y L, JIANG Q, WANG Z F, et al. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013[J]. J Geophys Res.-Atmos, 2014, 119:4380-4398.
    [5] ZHANG J K, SUN Y, LIU Z R, et al. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013[J]. Atmos Chem Phys, 2014, 14:2887-2903.
    [6] HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol:current and emerging issues[J]. Atmos Chem Phys, 2009, 9:5155-5236.
    [7] SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers[J]. Atmos Environ, 1996, 30:3837-3855.
    [8] ZHENG M, SALMON L G, SCHAUER J J, et al. Seasonal trends in PM2.5 source contributions in Beijing, China[J]. Atmos Environ, 2005, 39:3967-3976.
    [9] GUO S, HU M, GUO Q, et al. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics[J]. Atmos Chem Phys, 2013, 13:8303-8314.
    [10] PAATERO P, TAPPER U. Positive matrix factorization-a nonnegative factor model with optimal utilization of error-estimates of data values[J]. Environmetrics, 1994, 5:111-126.
    [11] REFF A, EBERLY S I, BHAVE P V. Receptor modeling of ambient particulate matter data using positive matrix factorization:Review of existing methods[J]. J Air Waste Manage Assoc, 2007, 57:146-154.
    [12] GARD E, MAYER J E, MORRICAL B D, et al. Real-time analysis of individual atmospheric aerosol particles:Design and performance of a portable ATOFMS[J]. Anal Chem, 1997, 69, 4083-4091.
    [13] HUGHES L S, ALLEN J O, KLEEMAN M J, et al. Size and composition distribution of atmospheric particles in southern California[J]. Environ Sci Technol, 1999, 33:3506-3515.
    [14] WANG X F, ZHANG Y P, CHEN H, et al. Particulate nitrate formation in a highly polluted urban area:a case study by single-particle mass spectrometry in Shanghai[J]. Environ Sci Technol, 2009, 43:3061-3066.
    [15] BI X H, ZHANG G H, LI L, et al. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China[J]. Atmos Environ, 2011, 45:3447-3453.
    [16] ZHANG G, BI X, LI L, et al. Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China:A case study[J]. Atmos Chem Phys, 2013, 13:4723-4735.
    [17] CANAGARATNA M R, JAYNE J T, JIMENEZ J L, et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectromete[J]r. Mass Spectrom Rev, 2007, 26:185-222.
    [18] ZHANG Q, ALFARRA M R, WORSNOP D R, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry[J]. Environ Sci Technol, 2005, 39:4938-4952.
    [19] AIKEN A C, DECARLO P F, KROLL J H, et al. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry[J]. Environ Sci Technol, 2008, 42:4478-4485.
    [20] LANZ V A, ALFARRA M R, BALTENSPERGER U, et al. Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra[J]. Atmos Chem Phys, 2007, 7:1503-1522.
    [21] ZHANG Q, JIMENEZ J L, CANAGARATNA M R, et al. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry:a review[J]. Anal Bioanal Chem, 2011, 401:3045-3067.
    [22] HUANG X F, HE L Y, HU M et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an aerodyne high-resolution aerosol mass spectrometer[J]. Atmos Chem Phys, 2010, 10:8933-8945.
    [23] HE L Y, HUANG X F, XUE L, et al. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry[J]. J Geophys Res-Atmos, 2011, 116(D12):1248-1256.
    [24] HUEY L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry:Speciation of reactive nitrogen and future directions[J]. Mass Spectrom Rev, 2007, 26:166-184.
    [25] JUNNINEN H, EHN M, PETAJA T, et al. A high-resolution mass spectrometer to measure atmospheric ion composition[J]. Atmos Meas Tech, 2010, 3:1039-1053.
    [26] JOKINEN T, SIPILA M, JUNNINEN H, et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF[J]. Atmos Chem Phys, 2012, 12:4117-4125.
    [27] BERTRAM T H, KIMMEL J R, CRISP T A, et al. A field-deployable, chemical ionization time-of-flight mass spectrometer[J]. Atmos Meas Tech, 2011, 4:1471-1479.
    [28] HEARN J D, SMITH G D. A chemical ionization mass spectrometry method for the online analysis of organic aerosols[J]. Anal Chem, 2004, 76:2820-2826.
    [29] HEARN J D, SMITH G D. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS[J]. J Phys Chem A 2004, 108:10019-10029.
    [30] HEARN J D, LOVETT A J, SMITH G D. Ozonolysis of oleic acid particles:evidence for a surface reaction and secondary reactions involving criegee intermediates[J]. Phys Chem Chem Phys, 2005, 7:501-511.
    [31] VOISIN D, SMITH J N, SAKURAI H, et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition[J]. Aerosol Sci Tech, 2003, 37:471-475.
    [32] SMITH J N, MOORE K F, MCMURRY P H, et al. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry[J]. Aerosol Sci Tech, 2004, 38:100-110.
    [33] YATAVELLI R L N, STARK H, THOMPSON S L, et al. Semicontinuous measurements of gas-particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS[J]. Atmos Chem Phys, 2014, 14:1527-1546.
    [34] LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. A novel method for online analysis of gas and particle composition:Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)[J]. Atmos Meas Tech, 2014, 7:983-1001.
    [35] LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. Phase partitioning and volatility of secondary organic aerosol components formed from alpha-pinene ozonolysis and OH oxidation:The importance of accretion products and other low volatility compounds[J]. Atmos Chem Phys, 2015, 15:7765-7776.
    [36] LINDINGER W, HANSEL A, JORDAN A. Proton-transfer-reaction mass spectrometry (PTR-MS):On-line monitoring of volatile organic compounds at pptv levels[J]. Chem Soc Rev, 1998, 27:347-354.
    [37] VERES P, ROBERTS J M, WARNEKE C, et al. Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere[J]. Int J Mass Spectrom, 2008, 274:48-55.
    [38] LEE B H, LOPEZ-HILFIKER F D, MOHR C, et al. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer:Application to atmospheric inorganic and organic compounds[J]. Environ Sci Technol, 2014, 48:6309-6317.
    [39] EISELE F L, TANNER D J. Measurement of the Gas-Phase concentration of H2SO4 and methane sulfonic-acid and estimates of H2SO4 production and loss in the atmosphere[J]. J Geophys Res-Atmos, 1993, 98:9001-9010.
    [40] SCHOBESBERGER S, JUNNINEN H, BIANCHI F, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules[J]. Proc Natl Acad Sci U S A, 2013, 110:17223-17228.
    [41] ALJAWHARY D, LEE A K Y, ABBATT J P D. High-resolution chemical ionization mass spectrometry (ToF-CIMS):Application to study SOA composition and processing[J]. Atmos Meas Tech, 2013, 6:3211-3224.
    [42] DONAHUE N M, ROBINSON A L, STANIER C O, et al. Coupled partitioning, dilution, and chemical aging of semivolatile organics[J]. Environ Sci Technol, 2006, 40:2635-2643.
  • 加载中
计量
  • 文章访问数:  950
  • HTML全文浏览数:  852
  • PDF下载数:  531
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-09
  • 刊出日期:  2016-11-15

基于热脱附-化学电离质谱技术的二次有机气溶胶成分分析和前体物解析

  • 1. 复旦大学环境科学与工程系, 上海市大气颗粒物污染防治重点实验室, 上海, 200433
基金项目:

国家自然科学基金(21561130150)资助.

摘要: 二次有机气溶胶是大气颗粒物的重要组成部分.有关二次有机气溶胶的分子示踪物、生成机制,以及产率的实验室研究和外场观测工作已在世界各地广泛开展;然而,学术界对二次有机气溶胶的认识仍待进一步加深,以期更为全面地了解二次有机气溶胶生成和消亡的整个大气过程.本课题组拟利用新近发展的热脱附-化学电离-飞行时间质谱技术为主要手段,从新的视角研究二次有机气溶胶的化学物种和形成机制:在烟雾箱中研究一系列生物源和人类源有机化合物与羟基自由基、硝基自由基、以及臭氧的反应,应用热脱附-化学电离-飞行时间质谱技术测定二次有机气溶胶的分子组成特征;在相对污染和相对洁净地区分别组织外场观测,着重于实际大气中二次有机气溶胶的热脱附-化学电离-飞行时间质谱技术的方法发展;实现利用烟雾箱研究获得每个前体物生成的二次有机气溶胶的指纹特征,使用多元线性回归分析技术分析实际大气中的二次有机气溶胶的前体物来源;通过相对污染和相对洁净两个地区的比较,阐明两地的大气颗粒物污染是否在化学组分方面具有类似性而只是具有浓度上的差别,或者两地的大气颗粒物污染是否由于前体物浓度上的差异而已具有化学组分上的非线性差异.

English Abstract

参考文献 (42)

目录

/

返回文章
返回