生物炭对重金属污染沉积物的修复效果
Remediation effect of biochar on sediment contaminated by heavy metals
-
摘要: 采用1%、2%和5%的生物炭钝化污染沉积物中的重金属,并研究生物炭修复对水体的生态影响.结果表明,生物炭添加后水体的pH值显著增大,上覆水和间隙水中溶解态Cu、Zn和Cd浓度均显著降低.1%(W/W)生物炭添加量使上覆水中溶解态Cu比对照降低了82.4%;在不同添加量下间隙水溶解态Zn降低幅度为11.7%-62.8%.通过BCR重金属形态分级发现沉积物中酸溶态重金属均有向残渣态转化的趋势.在5%生物炭添加量时,酸溶态Cu降低了73.08 mg·kg-1,降低幅度达到32.1%,而可氧化态Pb增加幅度达到67.8%.通过生物可利用实验(PBET)发现,当生物炭添加量为5%时,生物可利用性Cu降低9.8%,Zn、Pb和Cd的生物可利用性也有不同程度降低.生物炭添加到沉积物后,用于植物毒性试验的家独行菜(Lepidium sativum)茎长呈现19.5%-25.7%的增加,根长也随之增加,说明生物炭降低了沉积物重金属的植物毒性.
-
关键词:
- 重金属 /
- 沉积物 /
- 生物炭 /
- 生物可利用实验(PBET) /
- 植物毒性
Abstract: Heavy metals in contaminated sediments were immobilized by biochar with application rates of 1%, 2% and 5%, and the ecological impact of biochar remediation on aquatic environment was evaluated. The results indicated that biochar application led to significant increase of pH but significant decrease of dissolved Cu, Zn and Cd concentrations in the overlying water. Compared to the control, dissolved Cu concentration in the overlying water at biochar application rate of 1% (W/W) was reduced by 82.4%. With different rates of biochar application, the reduction of dissolved Zn concentrations in the sediment pore water ranged from 11.7% to 62.8%. BCR sequential extraction showed that heavy metals in the sediments tended to transform from acid-soluble fraction to residual fraction. Acid-soluble fraction of Cu decreased by 73.08 mg·kg-1 (32.1%) at the biochar application rate of 5%, while oxidizable fraction of Pb increased by 67.8%. Physiologically based extraction test showed that, when 5% biochar was applied, bioavailable Cu was reduced by 9.8% with simultaneous decrease in bioavailable Zn, Pb and Cd. When the phytotoxicity test was carried out with sediments remediated by biochar, the stem length of Lepidium sativum significantly increased by 19.5% to 25.7%, and the root length increased as well. The result suggested that biochar application could reduce the phototoxicity of heavy metals in the sediments.-
Key words:
- heavy metals /
- sediment /
- biochar /
- physiologically based extraction test (PBET) /
- phytotoxicity
-
-
[1] GHOSH U,LUTHY R G,CORNELISSEN G,et al.In-situ sorbent amendments:A new direction in contaminated sediment management[J].Environmental Science&Technology,2011,45(4):1163-1168. [2] ZENG G M,WU H P,LIANG J,et al.Efficiency of biochar and compost (or composting) combined amendments for reducing Cd,Cu,Zn and Pb bioavailability,mobility and ecological risk in wetland soil[J].Rsc Advances,2015,5(44):34541-34548. [3] 秦延文,张雷,郑丙辉,等.太湖表层沉积物重金属赋存形态分析及污染特征[J].环境科学,2012,33(12):4291-4299. QIN Y W,ZHANG L,ZHENG B H,et al.Speciation and pollution characteristics of heavy metals in the sediment of Taihu Lake[J].Environment Science,2012,33(12):4291-4299(in Chinese).
[4] 叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859. YE H M,YUAN X Y,ZHAO J.Spatial migration and environmental effects of heavy metals in river sediments from in the Tongling mining area,Anhui province[J].China Environmental Science,2012,32(10):1853-1859(in Chinese).
[5] MAMINDY-PAJANY Y,GERET F,HUREL C,et al.Batch and column studies of the stabilization of toxic heavy metals in dredged marine sediments by hematite after bioremediation[J].Environment Science Pollution Research Internationa,2013,20(8):5212-5219. [6] BEASLEY G,KNEALE P E.Investigating the influence of heavy metals on macroinvertebrate assemblages using Partial Canonical Correspondence Analysis (pCCA)[J].Hydrology and Earth System Sciences,2003,7(2):221-233. [7] ENZO L Z,ZHAO F J,ZHANG G Y,et al.In situ fixation of metals in soils using bauxite residue:Chemical assessment[J].Environmental Pollution,2002,118(3):435-443. [8] ZOUBEIR L,ADELINE S,LAURENT C S,et al.The use of the Novosol process for the treatment of polluted marine sediment[J].Journal of Hazardous Materials,2007,148(3):606-612. [9] KWON Y T,LEE C W.Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation[J].Microchemical Journal,2001,70(3):255-264. [10] 吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学,2014,36(1):309-313. WU L S,ZENG D M,MO X R,et al.Immobilization impact of different fixatives on heavy metals contaminated soil[J].Environment Science,2014,36(1):309-313(in Chinese).
[11] 孙红文.生物炭与环境[M].北京:化学工业出版社,2013.SUN H W.Biochar and environment[M].Beijing:Chemical Industry Press,2013(in Chinese). [12] 刘玉学,王耀锋,吕豪豪,等.生物质炭化还田对稻田温室气体排放及土壤理化性质的影响[J].应用生态学报,2013,24(8):2166-2172. LIU Y X,WANG Y F,LV H H et al.Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties[J].Chinese Journal of Applied Ecology,2013,24(8):2166-2172(in Chinese).
[13] WU M X,YANG M,HAN X G,et al.2016.Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil:Evidence for an effective pathway toward carbon sequestration[J].Environment Science Pollution Research,23(2):1007-1014. [14] REGMI P,MOSCOSO J L G,KUMAR S,et al.Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J].Journal Environment Management,2012,109:61-69. [15] 张伟明,张庆忠,陈温福.镉污染土壤中施用秸秆炭对水稻生长发育的影响[J].北方水稻,2009,39(2):4-7. ZHANG W M,ZHANG Q Z,CHEN W F.Effects of crop-residue-derived charcoal amendment on growth and development of rice in a Cd-polluted soil[J].North Rice,2009,39(2):4-7(in Chinese).
[16] WAGNER A,KAUPENJOHANN M.Suitability of biochars (pyro-and hydrochars) for metal immobilization on former sewage-field soils[J].European Journal of Soil Biology,2014,65(1):139-148. [17] BEESLEY L,MORENO-JIMENEZ E,GOMEZ-EYLES J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution,2010,158(6):2282-2287. [18] CHEN Z,WANG Y,XIA D,et al.Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J].Journal of Hazardous Materials,2016,311:20-29. [19] JOSKO I,OLESZCZUK P,PRANAGAL J,et al.Effect of biochars,activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants[J].Ecological Engineering,2013,60:50-59. [20] 杨敏.水稻秸秆生物质炭在稻田土壤中的稳定性及其机理研究[D].杭州:浙江大学,2013.YANG M.Stability of rice straw-derived biochar and its mechanism in paddy soil[D].Hangzhou:Zhejiang University,2013(in Chinese). [21] 鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [22] DAI Z M,WANG Y N,MUHAMMAD N,et al.The effects and mechanisms of soil acidity changes,following incorporation of biochars in three soils differing in initial pH[J].Soil Science Society of America Journal,2014,78(5):1606-1614. [23] GILMOUR C C,RIEDEL G S,RIEDEL G,et al.Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments[J].Environmental Science&Technology,2013,47(22):13001-13010. [24] RAURET G,LOPEZ-SANCHEZ J F,SAHUQUILLO A,et al.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring,1999,1(1):57-61. [25] GEEBELEN W,ADRIANO D C,LELIE D V,et al.Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils[J].Plant and Soil,2003,249(1):217-228. [26] KARADAS C,KARA D.Chemometric evaluation for the relation of BCR sequential extraction method and in vitro gastro-intestinal method for the assessment of metal bioavailability in contaminated soils in Turkey[J].Environment Science Pollution Research Internationa,2012,19:1280-1295. [27] LEE S H,KIM E Y,PARK H,et al.In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J].Geoderma,2011,161(1):1-7. [28] HUTCHINS C M,TEASDALE P R,LEE S Y,et al.The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests[J].Science of the Total Environment,2008,405(1-3):87-95. [29] 张恩仁,张经.长江河口悬浮物对几种金属吸附的pH效应[J].海洋与湖沼,2003,34(3):267-273. ZHANG E R,ZHANG J.Effects of pH on adsorption of several metals to suspended sediment in the Changjing river estuary[J].Oceanologia et Limnologia Sinica,2003,34(3):267-273(in Chinese).
[30] 杨超,杨振东,聂玉伦,等.北运河表层沉积物对重金属Cu、Pb、Zn的吸附[J].环境工程学报,2012.,6(10):3438-3442. YANG C,YANG Z D,NIE Y L et al.Adsorption of heavy metals Cu,Pb,Zn over top sediment in North River Canal[J].Chinese Journal of Environmental Engineering,2012,6(10):3438-3442(in Chinese).
[31] XU X Y,CAO X D,ZHAO L,et al.Interaction of organic and inorganic fractions of biochar with Pb (Ⅱ) ion:Further elucidation of mechanisms for Pb (Ⅱ) removal by biochar[J].Rsc Advances,2014,85(4):44930-44937. [32] 宝金花.包头市南海子水体重金属污染的环境地球化学研究[D].呼和浩特:内蒙古大学,2006.BAO J H.Study on environmental geochemistry of heavy metal pollution in the water body of nanhaizi in baotou city[D].Hohhot:Inner mongolia University,2006(in Chinese). [33] 阮金山.厦门贝类养殖区海水、沉积物和养殖贝类体内重金属含量的初步研究[J].热带海洋学报,2008,27(5):47-54. RUAN J S.A preliminary study of heavy metal contents in sea water,sediments and cultured shel lfish in shel lfish culture areas of Xiamen[J].Journal of Tropical Oceanography,2008,27(5):47-54(in Chinese).
[34] 王书航,王雯雯,姜霞,等.蠡湖沉积物重金属形态及稳定性研究[J].环境科学,2013,34(9):3562-3571. WANG S H,WANG W W,JIANG X,et al.Heavy metal speciation and stability in the sediment of Lihu Lake[J].Environment Science,2013,34(9):3562-3571(in Chinese).
[35] CAO X D,MA L,LIANG Y,et al.Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J].Environment Science&Technology,2011,45(11):4884-4889. [36] 安增莉,侯艳伟,蔡超,等.水稻秸秆生物炭对Pb (Ⅱ)的吸附特性[J].环境化学,2011,30(11):1851-1857. AN Z L,HOU Y W,CAI C,et al.Lead (Ⅱ) adsorption characteristics on different biochars derived from rice straw[J].Environmental Chemistry,2011,30(11):1851-1857(in Chinese).
[37] 林雪原,荆延德,巩晨,等.生物炭吸附重金属的研究进展[J].环境污染与防治,2014,36(5):83-87. LIN X Y,JING Y D,KONG C,et al.Research progress on the sorption of heavy metals by biochar[J].Environmental Pollution and Control,2014,36(5):83-87(in Chinese).
[38] 袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J].生态环境学报,2011,20(4):779-785. YUAN J H,XU R K.Progress of the research on the properties of biochars and their influence on soil environmental functions[J].Ecology and Environmental Sciences,2011,20(4):779-785(in Chinese).
[39] TOKALIOGLU S,KARTAL S.Statistical evaluation of the bioavailability of heavy metals from contaminated soils to vegetables[J].Bulletin of Environmental Contamination and Toxicology,2006,76(2):311-319. [40] 王模善,赵铁铭.重金属镉对沉水植物毒性效应的研究[J].西南大学学报,2008,30(4):128-134. WANG M S,ZHAO T M.Toxicity of cadmium to submerged macrophytes[J].Journal of Southwest University,2008,30(4):128-134(in Chinese).
[41] GARCÍA-LORENZO M L,MARTÍNEZ-SÁNCHEZ M J,PÉREZ-SIRVENT C.Application of a plant bioassay for the evaluation of ecotoxicological risks of heavy metals in sediments affected by mining activities[J].Journal of Soils and Sediments,2014,14(10):1753-1765. [42] RUBY M V,DAVIS A,SCHOOF R,et al.Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J].Environmental Science&Technology,1996,30(2):422-430. [43] DEVESA-REY R,DIAZ-FIERROS F,BARRAL M T.Trace metals in river bed sediments:an assessment of their partitioning and bioavailability by using multivariate exploratory analysis[J].Journal of Environmental Management,2010,91(12):2471-2477. [44] REN J,WILLIAMS P N,LUO J,et al.Sediment metal bioavailability in Lake Taihu,China:Evaluation of sequential extraction,DGT,and PBET techniques[J].Environmental Science and Pollution Research,2015,22(17):12919-12928. [45] DEVESA-REY R,PARADELO R,DÍAZ-FIERROS F,BARRAL M T.Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain)[J].Water Air and Soil Pollution,2008,195(1/4):189-199. -

计量
- 文章访问数: 1089
- HTML全文浏览数: 993
- PDF下载数: 511
- 施引文献: 0