水环境中纳米氧化锌的环境行为及生物毒性研究进展

王宁, 刘丹, 谢敏伟, 李启彬, 刘庆梅. 水环境中纳米氧化锌的环境行为及生物毒性研究进展[J]. 环境化学, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
引用本文: 王宁, 刘丹, 谢敏伟, 李启彬, 刘庆梅. 水环境中纳米氧化锌的环境行为及生物毒性研究进展[J]. 环境化学, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
WANG Ning, LIU Dan, XIE Minwei, LI Qibin, LIU Qingmei. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment[J]. Environmental Chemistry, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
Citation: WANG Ning, LIU Dan, XIE Minwei, LI Qibin, LIU Qingmei. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment[J]. Environmental Chemistry, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601

水环境中纳米氧化锌的环境行为及生物毒性研究进展

  • 基金项目:

    国家建设高水平大学公派研究生项目和美国国家自然基金(NSF#CBET-106775)资助.

Behavior and toxicity of zinc oxide nanoparticles in aquatic environment

  • Fund Project: Supported by China Scholarship Council Program Study for PhD Degree in Advance and National Natural Science Foundation of United States(NSF#CBET-106775).
  • 摘要: 随着纳米氧化锌的大量生产和应用,作为其最终受体之一的水环境将面临越来越大的威胁.纳米氧化锌在水环境中的团聚,溶解等环境行为使其具有不稳定性,在很大程度上影响着纳米氧化锌在水体中的迁移性、生物可利用性以及对生态环境的毒性.本文着重探讨纳米氧化锌在水环境中的环境行为及其影响控制因素和检测分析方法,归纳纳米氧化锌对不同种类水生生物的毒性效应,分析纳米氧化锌的毒性机制及其存在的问题,并对水环境中纳米氧化锌的环境行为及生物毒性的研究方向进行了展望.
  • 加载中
  • [1] KOŁODZIEJCZAK-RADZIMSKA A,JESIONOWSKI T.Zinc oxide-from synthesis to application:A review[J].Materials,2014,7(4):2833-2881.
    [2] XIONG H M.ZnO nanoparticles applied to bioimaging and drug delivery[J].Advanced Materials,2013,25(37):5329-5335.
    [3] KHATAEE A,KARIMI A,AREFI-OSKOUI S,et al.Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17[J].Ultrasonics Sonochemistry,2015,22:371-381.
    [4] ADAM N,SCHMITT C,GALCERAN J,et al.The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution[J].Nanotoxicology,2014,8(7):709-717.
    [5] LI Y,NIU J,ZHANG W,et al.Influence of aqueous media on the ROS-mediated toxicity of ZnO nanoparticles toward green fluorescent protein-expressing Escherichia coli under UV-365 irradiation[J].Langmuir,2014,30(10):2852-2862.
    [6] CHEN T H,LIN C C,MENG P J.Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio)[J].Journal of Hazardous Materials,2014,277:134-140.
    [7] BAKER T J,TYLER C R,GALLOWAY T S.Impacts of metal and metal oxide nanoparticles on marine organisms[J].Environmental Pollution,2014,186:257-271.
    [8] SUN T Y,GOTTSCHALK F,HUNGERBUHLER K,et al.Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J].Environmental Pollution,2014,185:69-76.
    [9] MA H,WILLIAMS P L,DIAMOND S A.Ecotoxicity of manufactured ZnO nanoparticles:A review[J].Environmental Pollution,2013,172:76-85.
    [10] IVASK A,JUGANSON K,BONDARENKO O,et al.Mechanisms of toxic action of Ag,ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro:A comparative review[J].Nanotoxicology,2014,8(sup1):57-71.
    [11] BARNES R J,MOLINA R,XU J,et al.Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria[J].Journal of Nanoparticle Research,2013,15(2):1-11.
    [12] DASARI T P,PATHAKOTI K,HWANG H M.Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO,CuO,Co3O4 and TiO2) to E.coli bacteria[J].Journal of Environmental Sciences,2013,25(5):882-888.
    [13] GOTTSCHALK F,SONDERER T,SCHOLZ R W,et al.Modeled environmental concentrations of engineered nanomaterials (TiO2,ZnO,Ag,CNT,fullerenes) for different regions[J].Environmental Science&Technology,2009,43(24):9216-9222.
    [14] JIANG X,WANG X,TONG M,et al.Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm[J].Environmental Pollution,2013,174:38-49.
    [15] DEMIR E,AKCA H,KAYA B,et al.Zinc oxide nanoparticles:Genotoxicity,interactions with UV-light and cell-transforming potential[J].Journal of Hazardous Materials,2014,264:420-429.
    [16] HAN Y,KIM D,HWANG G,et al.Aggregation and dissolution of ZnO nanoparticles synthesized by different methods:Influence of ionic strength and humic acid[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,451:7-15.
    [17] OTERO-GONZÁLEZ L,FIELD J A,SIERRA-ALVAREZ R.Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment[J].Journal of Environmental Management,2014,135:110-117.
    [18] CHAÚQUE E,ZVIMBA J,NGILA J,et al.Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater[J].Physics and Chemistry of the Earth,Parts A/B/C,2014,67:140-144.
    [19] MAJEDI S M,KELLY B C,LEE H K.Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems:A multiparametric analysis[J].Journal of Hazardous Materials,2014,264:370-379.
    [20] AKHIL K,CHANDRAN P,KHAN S S.Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water[J].Journal of Photochemistry and Photobiology B:Biology,2015,153:289-295.
    [21] BIAN S W,MUDUNKOTUWA I A,RUPASINGHE T,et al.Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:Influence of pH,ionic strength,size,and adsorption of humic acid[J].Langmuir,2011,27(10):6059-6068.
    [22] DOMINGOS R F,RAFIEI Z,MONTEIRO C E,et al.Agglomeration and dissolution of zinc oxide nanoparticles:Role of pH,ionic strength and fulvic acid[J].Environmental Chemistry,2013,10(4):306-312.
    [23] LV J,ZHANG S,LUO L,et al.Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate[J].Environmental Science&Technology,2012,46(13):7215-7221.
    [24] MERDZAN V,DOMINGOS R F,MONTEIRO C E,et al.The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga,C.reinhardtii[J].Science of the Total Environment,2014,488:316-324.
    [25] MUDUNKOTUWA I A,RUPASINGHE T,WU C M,et al.Dissolution of ZnO nanoparticles at circumneutral pH:A study of size effects in the presence and absence of citric acid[J].Langmuir,2011,28(1):396-403.
    [26] DAVID C A,GALCERAN J,REY-CASTRO C,et al.Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES[J].The Journal of Physical Chemistry C,2012,116(21):11758-11767.
    [27] YIN H,CASEY P S,MCCALL M J,et al.Effects of surface chemistry on cytotoxicity,genotoxicity,and the generation of reactive oxygen species induced by ZnO nanoparticles[J].Langmuir,2010,26(19):15399-15408.
    [28] LEUNG Y H,CHAN C M N,Ng A M C,et al.Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination[J].Nanotechnology,2012,23(47):475703.
    [29] GOH E,XU X,MCCORMICK P.Effect of particle size on the UV absorbance of zinc oxide nanoparticles[J].Scripta Materialia,2014,78:49-52.
    [30] 张瑞昌,章海波,涂晨,等.pH,离子强度及电解质种类对纳米氧化锌聚集和溶解的影响[J].环境化学,2014,33(11):1821-1827.

    ZHANG R,ZHANG H,TU C,et al.Influence of pH,ionic strength and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles[J].Environmental Chemistry,2014,33(11):1821-1827(in Chinese).

    [31] MIAO A J,ZHANG X Y,LUO Z,et al.Zinc oxide-engineered nanoparticles:Dissolution and toxicity to marine phytoplankton[J].Environmental Toxicology and Chemistry,2010,29(12):2814-2822.
    [32] REED R B,LADNER D A,HIGGINS C P,et al.Solubility of nano-zinc oxide in environmentally and biologically important matrices[J].Environmental Toxicology and Chemistry,2012,31(1):93-99.
    [33] CUPI D,HARTMANN N B,BAUN A.The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver,zinc oxide,and titanium dioxide nanoparticles with Daphnia magna[J].Environmental Toxicology and Chemistry,2015,34(3):497-506.
    [34] TANG W W,ZENG G M,GONG J L,et al.Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials:A review[J].Science of the Total Environment,2014,468:1014-1027.
    [35] OMAR F M,AZIZ H A,STOLL S.Aggregation and disaggregation of ZnO nanoparticles:Influence of pH and adsorption of Suwannee River humic acid[J].Science of the Total Environment,2014,468:195-201.
    [36] TONG T,FANG K,THOMAS S A,et al.Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium[J].Environmental Science&Technology,2014,48(14):7924-7932.
    [37] JIANG C,HSU-KIM H.Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry[J].Environmental Science:Processes&Impacts,2014,16(11):2536-2544.
    [38] FRANKLIN N M,ROGERS N J,APTE S C,et al.Comparative toxicity of nanoparticulate ZnO,bulk ZnO,and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility[J].Environmental Science&Technology,2007,41(24):8484-8490.
    [39] WONG S W,LEUNG P T,DJURIŠIC'A,et al.Toxicities of nano zinc oxide to five marine organisms:Influences of aggregate size and ion solubility[J].Analytical and Bioanalytical Chemistry,2010,396(2):609-618.
    [40] SONG W,ZHANG J,GUO J,et al.Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles[J].Toxicology Letters,2010,199(3):389-397.
    [41] MILLER R J,LENIHAN H S,MULLER E B,et al.Impacts of metal oxide nanoparticles on marine phytoplankton[J].Environmental Science&Technology,2010,44(19):7329-7334.
    [42] WU B,WANG Y,LEE Y H,et al.Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes[J].Environmental Science&Technology,2010,44(4):1484-1489.
    [43] XU M,Li J,HANAGATA N,et al.Challenge to assess the toxic contribution of metal cation released from nanomaterials for nanotoxicology-the case of ZnO nanoparticles[J].Nanoscale,2013,5(11):4763-4769.
    [44] HERRERO E,ARANCIBIA V,ROJAS-ROMO C.Simultaneous determination of Pb2+,Cd2+ and Zn2+ by adsorptive stripping voltammetry using Clioquinol as a chelating-adsorbent agent[J].Journal of ElectroAnalytical Chemistry,2014,729:9-14.
    [45] RIBEIRO L F,MASINI J C.Automated determination of Cu (Ⅱ),Pb (Ⅱ),Cd (Ⅱ) and Zn (Ⅱ) in environmental samples by square wave voltammetry exploiting sequential injection analysis and screen printed electrodes[J].Electroanalysis,2014,26(12):2754-2763.
    [46] ZHANG L,JIANG Y,DING Y,et al.Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)[J].Journal of Nanoparticle Research,2007,9(3):479-489.
    [47] XIE Y,HE Y,IRWIN P L,et al.Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni[J].Applied and Environmental Microbiology,2011,77(7):2325-2331.
    [48] PREMANATHAN M,KARTHIKERAN K,JEYASUBRAMANIAN K,et al.Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation[J].Nanomedicine:Nanotechnology,Biology and Medicine,2011,7(2):184-192.
    [49] IVASK A,BONDARENKO O,JEPIHHINA N,et al.Profiling of the reactive oxygen species-related ecotoxicity of CuO,ZnO,TiO2,silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains:Differentiating the impact of particles and solubilised metals[J].Analytical and Bioanalytical Chemistry,2010,398(2):701-716.
    [50] LI M,LIN D,ZHU L.Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli[J].Environmental Pollution,2013,173:97-102.
    [51] LI M,ZHU L,LIN D.Toxicity of ZnO nanoparticles to Escherichia coli:Mechanism and the influence of medium components[J].Environmental Science&Technology,2011,45(5):1977-1983.
    [52] SAPKOTA A,ANCENO A J,BARUAH S,et al.Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water[J].Nanotechnology,2011,22(21):215703.
    [53] ARUOJA V,DUBOURGUIER H C,KASEMETS K,et al.Toxicity of nanoparticles of CuO,ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J].Science of the Total Environment,2009,407(4):1461-1468.
    [54] HEINLAAN M,IVASK A,BLINOVA I,et al.Toxicity of nanosized and bulk ZnO,CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J].Chemosphere,2008,71(7):1308-1316.
    [55] WIENCH K,WOHLLEBEN W,HISGEN V,et al.Acute and chronic effects of nano-and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna[J].Chemosphere,2009,76(10):1356-1365.
    [56] BLINOVA I,IVASK A,HEINLAAN M,et al.Ecotoxicity of nanoparticles of CuO and ZnO in natural water[J].Environmental Pollution,2010,158(1):41-47.
    [57] ZHU X,WANG J,ZHANG X,et al.The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)[J].Nanotechnology,2009,20(19):195103.
    [58] BRUN N R,LENZ M,WEHRLI B,et al.Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos:Importance of zinc ions[J].Science of the Total Environment,2014,476(6):657-666.
    [59] YU L P,FANG T,XIONG D W,et al.Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation,OH production and particle dissolution in distilled water[J].Journal of Environmental Monitoring,2011,13(7):1975-1982.
    [60] XIONG D,FANG T,YU L,et al.Effects of nano-scale TiO2,ZnO and their bulk counterparts on zebrafish:Acute toxicity,oxidative stress and oxidative damage[J].Science of the Total Environment,2011,409(8):1444-1452.
    [61] PENG X,PALMA S,FISHER N S,et al.Effect of morphology of ZnO nanostructures on their toxicity to marine algae[J].Aquatic Toxicology,2011,102(3):186-196.
    [62] DIAMONG S A,PETERSON G S,TIETGE J E,et al.Assessment of the risk of solar ultraviolet radiation to amphibians.Ⅲ.Prediction of impacts in selected northern midwestern wetlands[J].Environmental Science&Technology,2002,36(13):2866-2874.
    [63] LIPOVSKY A,TZITRINOVICH Z,FRIEDMANN H,et al.EPR study of visible light-induced ROS generation by nanoparticles of ZnO[J].The Journal of Physical Chemistry C,2009,113(36):15997-16001.
    [64] MA H,KABENGI N,BERTSCH P,et al.Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans:The importance of illumination mode and primary particle size[J].Environmental Pollution,2011,159(6):1473-1480.
  • 加载中
计量
  • 文章访问数:  2321
  • HTML全文浏览数:  2251
  • PDF下载数:  718
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-06-06
  • 刊出日期:  2016-12-15
王宁, 刘丹, 谢敏伟, 李启彬, 刘庆梅. 水环境中纳米氧化锌的环境行为及生物毒性研究进展[J]. 环境化学, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
引用本文: 王宁, 刘丹, 谢敏伟, 李启彬, 刘庆梅. 水环境中纳米氧化锌的环境行为及生物毒性研究进展[J]. 环境化学, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
WANG Ning, LIU Dan, XIE Minwei, LI Qibin, LIU Qingmei. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment[J]. Environmental Chemistry, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601
Citation: WANG Ning, LIU Dan, XIE Minwei, LI Qibin, LIU Qingmei. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment[J]. Environmental Chemistry, 2016, 35(12): 2528-2534. doi: 10.7524/j.issn.0254-6108.2016.12.2016060601

水环境中纳米氧化锌的环境行为及生物毒性研究进展

  • 1. 西南交通大学地球科学与环境工程学院, 成都, 611756
基金项目:

国家建设高水平大学公派研究生项目和美国国家自然基金(NSF#CBET-106775)资助.

摘要: 随着纳米氧化锌的大量生产和应用,作为其最终受体之一的水环境将面临越来越大的威胁.纳米氧化锌在水环境中的团聚,溶解等环境行为使其具有不稳定性,在很大程度上影响着纳米氧化锌在水体中的迁移性、生物可利用性以及对生态环境的毒性.本文着重探讨纳米氧化锌在水环境中的环境行为及其影响控制因素和检测分析方法,归纳纳米氧化锌对不同种类水生生物的毒性效应,分析纳米氧化锌的毒性机制及其存在的问题,并对水环境中纳米氧化锌的环境行为及生物毒性的研究方向进行了展望.

English Abstract

参考文献 (64)

返回顶部

目录

/

返回文章
返回