美托洛尔在沉积物与活性污泥上的吸附行为

单振华, 严静娜, 杨腾飞, 任源. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
引用本文: 单振华, 严静娜, 杨腾飞, 任源. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
SHAN Zhenhua, YAN Jingna, YANG Tengfei, REN Yuan. Adsorption behaviors of metoprolol onto sediments and activated sludge[J]. Environmental Chemistry, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
Citation: SHAN Zhenhua, YAN Jingna, YANG Tengfei, REN Yuan. Adsorption behaviors of metoprolol onto sediments and activated sludge[J]. Environmental Chemistry, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604

美托洛尔在沉积物与活性污泥上的吸附行为

  • 基金项目:

    国家自然科学基金(51178190)和广州市科信局项目(2013J4100107)资助.

Adsorption behaviors of metoprolol onto sediments and activated sludge

  • Fund Project: Supported by the National Natural Science Foundation of China(51178190)and the Research Found of SIT of Guangzhou(2013J4100107).
  • 摘要: β-受体阻滞剂美托洛尔是最常用的临床治疗高血压药物,随生活污水进入污水处理系统后难以完全去除而影响生态环境,吸附是去除美托洛尔的有效方法之一.为评估美托洛尔在不同介质上的吸附行为,采用批平衡处理方法,分别探讨了吸附时间、初始浓度、溶液pH值、温度等条件下美托洛尔在污水处理厂活性污泥、珠江沉积物和湖泊沉积物上吸附行为.结果表明,3种吸附介质对美托洛尔的吸附过程均表现为先快速后缓慢的趋势,吸附平衡时间约为4 h且不受初始浓度的影响;酸性条件促进美托洛尔在介质上的吸附,离子强度的增大会抑制美托洛尔的吸附;美托洛尔在3种吸附介质上的动力学吸附过程符合伪二级动力学吸附模型,吸附常数为11.63-66.74 mg·(μg·min)-1.吸附过程包括物理吸附与化学吸附且以化学吸附为主,吸附反应比颗粒扩散、液膜扩散对吸附的影响更为显著,是反应的控制步骤.由于吸附介质的阳离子交换量和有机质含量的不同,3种吸附介质对美托洛尔的吸附等温线符合不同的拟合模型;热力学实验表明不同介质对美托洛尔吸附均为自发的放热反应.研究结果可为美托洛尔在天然环境中的去除技术和环境风险评价提供数据支撑.
  • 加载中
  • [1] GAO P,DING Y,Li H,et al.Occurrence of pharmaceuticals in a municipal wastewater treatment plant:Mass balance and removal processes[J].Chemosphere,2012,88(1):17-24.
    [2] BARBIERI M,LICHA T,NÖDLER K,et al.Fate of β-blockers in aquifer material under nitrate reducing conditions:Batch experiments[J].Chemosphere,2012,89(11):1272-1277.
    [3] BENDZ D,PAXÉUS N A,GINN T R,et al.Occurrence and fate of pharmaceutically active compounds in the environment,a case study:Höje River in Sweden[J].Journal of Hazardous Materials,2005,122(3):195-204.
    [4] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告2014》概要[J].中国循环杂志,2015,30(7):617-622.

    CHEN W W,GAO R L,LIU L S,et al.Summary of Chinese angiocardiopathy report in 2014[J].Chinese Circulation Journal,2015,30(7):617-622(in Chinese).

    [5] 李艳芳.心血管的肾上腺素受体及β-肾上腺受体阻滞剂应用的新观念[J].中华老年心脑血管病杂志,2007,9(9):646-648.

    Li Y F.New Concept of cardiovascular adrenergic receptors and β-adrenoceptor blockers applications[J].Chinese Journal of Geriatric Heart Brain and Vessel Diseases,2007,9(9):646-648(in Chinese).

    [6] 熊丹.基于CYP450介导的美托洛尔α-羟基化和O-去甲基化代谢通路的研究[D].南昌:南昌大学,2012.XIONG D.Study on the cytochrome P450 isoforms involved in α-hydroxylation and O-demethylation metabolism of metoprolol[D].Nanchang:Nanchang University,2012(in Chinese).
    [7] MAURER M,ESCHER B I,RICHLE P,et al.Elimination of β-blockers in sewage treatment plants[J].Water research,2007,41(7):1614-1622.
    [8] 许佳瑶,孙红文,汪磊.β-受体阻断剂在粘土上的吸附行为[J].环境化学,2013,32(11):2109-2114.

    XU J Y,SUN H W,WANG L.Sorption of β-blockers on clay[J].Environmental Chemistry,2013,32(11):2109-2114(in Chinese).

    [9] LIU Q,WILLIAMS H E.Kinetics and degradation products for direct photolysis of β-blockers in water[J].Environmental Science&Technology,2007,41(3):803-810.
    [10] MASZKOWSKA J,STOLTE S,KUMIRSKA,et al.Beta-blockers in the environment:Part I.Mobility and hydrolysis study[J].Science of the Total Environment,2014,493:1112-1121.
    [11] HUGGETT D B,KHAN I A,FORAN C M,et al.Determination of beta-adrenergic receptor blocking pharmaceuticals in United States wastewater effluent[J].Environmental Pollution,2003,121(2):199-205.
    [12] VIENO N M,TUHKANEN T,KRONBERG L.Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection[J].Journal of Chromatography A,2006,1134(1-2):101-111.
    [13] NAM S,JO B,YOON Y,et al.Occurrence and removal of selected micropollutants in a water treatment plant[J].Chemosphere,2014,95:156-165.
    [14] 柳晋杰.环境水体中β-受体阻断剂手性对映体分析方法的研究及应用[D].太原:山西医科大学,2010.LIU J J.Stereoisomer analysis of β-adrenergic receptor blockers in wastewater samples[D].Taiyuan:Shanxi Medical University,2010(in Chinese).
    [15] BEHERA S K,KIM H W,OH J,et al.Occurrence and removal of antibiotics,hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea[J].Science of the Total Environment,2011,409(20):4351-4360.
    [16] GABET-GIRAUD V,MIÈGE C,CHOUBERT J M,et al.Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants[J].Science of the Total Environment,2010,408(19):4257-4269.
    [17] TRIEBSKORN R,CASPER H,SCHEIL V,et al.Ultrastructural effects of pharmaceuticals (carbamazepine,clofibric acid,metoprolol,diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio)[J].Analytical and Bioanalytical Chemistry,2007,387(4):1405-1416.
    [18] CONTARDO-JARA V,PFLUGMACHER S,NVTZMANN G,et al.The β-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha[J].Environmental Pollution,2010,158(6):2059-2066.
    [19] HUGGETT D B,BROOKS B W,PETERSON B,et al.Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (β-Blockers) on aquatic organisms[J].Archives of Environmental Contamination and Toxicology,2002,43(2):229-235.
    [20] 施嘉琛,尚楠,张晶,等.β-受体阻断药物对大型蚤的毒性研究[J].毒理学杂志,2011,25(6):418-421.

    SHI J C,SHANG N,ZHANG J,et al.Toxicity of β-adrenergic receptor blockers to Daphnia (Daphnia magna)[J].Journal of Toxicology,f2011,25(6):418-421(in Chinese).

    [21] CLEUVERS M.Initial risk assessment for three β-blockers found in the aquatic environment[J].Chemosphere,2005,59(2):199-205.
    [22] VIENO N M,HÄEKKI H,TUHKANE N,et al.Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J].Environmental Science&Technology,2007,41(14):5077-5084.
    [23] BEDNER M,MACCREHAN W A.Reactions of the amine-containing drugs fluoxetine and metoprolol during chlorination and dechlorination processes used in wastewater treatment[J].Chemosphere,2006,65(11):2130-2137.
    [24] Li Z H,Fitzgerald N M,Albert Z,et al.Contrasting mechanisms of metoprolol uptake on kaolinite and talc[J].Chemical Engineering Journal,2015.272:48-57.
    [25] OECD.OECD guidelines for testing of chemicals,test guideline 106:adsorption/desorption using a batch equilibrium method[M].Paris:Revised Draft Document,2000:1-45.
    [26] SCHAFFER M,BÖMICK H,NÖDLER K,et al.Role of cation exchange processes on the sorption influenced transport of cationic β-blockers in aquifer sediments[J].Water Research,2012,46(17):5472-5482.
    [27] HO Y S,MCKAY G.A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J].Process Safety and Environmental Protection,1998,76(4):332-340.
    [28] HO Y S,MCKAY G.The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J].Water Research,2000,34(3):735-742.
    [29] LIN W,HSIEH Y.Kinetics of metal ion absorption on ion-exchange and chelating fibers[J].Industrial&Engineering Chemistry Research,1996,35(10):3817-3821.
    [30] GÜNDOČAN R,ACEMIOČLU B,ALMA M H.Copper (Ⅱ) adsorption from aqueous solution by herbaceous peat[J].Journal of Colloid and Interface Science,2004,269(2):303-309.
    [31] ZHENG H,WANG Y,ZHENG Y,et al.Equilibrium,kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite[J].Chemical Engineering Journal,2008,143(1-3):117-123.
    [32] 近藤精一,石川达雄,安部郁夫,等.吸附科学[M].李国希,译.北京:化学工业出版社,2010.SEⅡCHI K,TATSUO I,IKUO A,et al.Adsorption Science[M].Translated by Li G X.Beijing:Chemical Industry Press,2010(in Chinese).
    [33] NIEDBALA A,SCHAFFER M,LICHA T,et al.Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment[J].Chemosphere,2013,90(6):1945-1951.
  • 加载中
计量
  • 文章访问数:  739
  • HTML全文浏览数:  689
  • PDF下载数:  404
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-26
  • 刊出日期:  2016-12-15
单振华, 严静娜, 杨腾飞, 任源. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
引用本文: 单振华, 严静娜, 杨腾飞, 任源. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
SHAN Zhenhua, YAN Jingna, YANG Tengfei, REN Yuan. Adsorption behaviors of metoprolol onto sediments and activated sludge[J]. Environmental Chemistry, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604
Citation: SHAN Zhenhua, YAN Jingna, YANG Tengfei, REN Yuan. Adsorption behaviors of metoprolol onto sediments and activated sludge[J]. Environmental Chemistry, 2016, 35(12): 2559-2567. doi: 10.7524/j.issn.0254-6108.2016.12.2016072604

美托洛尔在沉积物与活性污泥上的吸附行为

  • 1. 华南理工大学环境与能源学院, 广州, 510006
基金项目:

国家自然科学基金(51178190)和广州市科信局项目(2013J4100107)资助.

摘要: β-受体阻滞剂美托洛尔是最常用的临床治疗高血压药物,随生活污水进入污水处理系统后难以完全去除而影响生态环境,吸附是去除美托洛尔的有效方法之一.为评估美托洛尔在不同介质上的吸附行为,采用批平衡处理方法,分别探讨了吸附时间、初始浓度、溶液pH值、温度等条件下美托洛尔在污水处理厂活性污泥、珠江沉积物和湖泊沉积物上吸附行为.结果表明,3种吸附介质对美托洛尔的吸附过程均表现为先快速后缓慢的趋势,吸附平衡时间约为4 h且不受初始浓度的影响;酸性条件促进美托洛尔在介质上的吸附,离子强度的增大会抑制美托洛尔的吸附;美托洛尔在3种吸附介质上的动力学吸附过程符合伪二级动力学吸附模型,吸附常数为11.63-66.74 mg·(μg·min)-1.吸附过程包括物理吸附与化学吸附且以化学吸附为主,吸附反应比颗粒扩散、液膜扩散对吸附的影响更为显著,是反应的控制步骤.由于吸附介质的阳离子交换量和有机质含量的不同,3种吸附介质对美托洛尔的吸附等温线符合不同的拟合模型;热力学实验表明不同介质对美托洛尔吸附均为自发的放热反应.研究结果可为美托洛尔在天然环境中的去除技术和环境风险评价提供数据支撑.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回