人工合成纳米材料的生物可给性与毒性

文若曦, 孙振东, 周群芳, 江桂斌. 人工合成纳米材料的生物可给性与毒性[J]. 环境化学, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
引用本文: 文若曦, 孙振东, 周群芳, 江桂斌. 人工合成纳米材料的生物可给性与毒性[J]. 环境化学, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
WEN Ruoxi, SUN Zhendong, ZHOU Qunfang, JIANG Guibin. Bioavailability and toxicity of engineered nanomaterials[J]. Environmental Chemistry, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
Citation: WEN Ruoxi, SUN Zhendong, ZHOU Qunfang, JIANG Guibin. Bioavailability and toxicity of engineered nanomaterials[J]. Environmental Chemistry, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303

人工合成纳米材料的生物可给性与毒性

  • 基金项目:

    国家自然科学基金(21461142001,21477153)和中国科学院重大专项B(14040302)资助.

Bioavailability and toxicity of engineered nanomaterials

  • Fund Project: Supported by the National Natural Science Foundation of China (21461142001, 21477153) and Strategic Priority Research Program of the Chinese Academy of Science (14040302).
  • 摘要: 随着人工纳米材料在工业、生活、医疗等各领域中的广泛应用,其环境暴露已不可避免.由于纳米材料生物可给性决定了其环境危害与人体健康风险,因此近年来这方面的研究已成为环境科学领域关注的热点.本文基于细胞和微生物、动物、人体等,从纳米材料种类、暴露途径、摄入动力学、体内分布、消除行为等方面,对人工纳米材料的生物可给性与毒性进行了综述,为客观评价纳米材料的生物安全性提供了科学参考.
  • 加载中
  • [1]  [1] CHAKRAVORTHY D, GIRI A K. Chemistry of advanced materials[M]. Blackwell:Oxford, 1993.
    [2] [2] FENG X, YUAN X L, SEKIGUCHI T, et al. Aligned Zn-Zn2SiO4 core-shell nanocables with homogenously intense ultraviolet emission at 300 nm[J]. Journal of Physical Chemistry B, 2005, 109(33):15786-15790.
    [3] [3] MOHAN P, MOTOHISA J, FUKUI T. Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2006, 88(13):133105(1)-13305(3).
    [4] [4] PARK W I, YOO J, KIM D W, et al. Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures[J]. Journal of Physical Chemistry B, 2006, 110(4):1516-1519.
    [5] [5] MENAA F, ABDELGHANI A, MENAA B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells:Impact for tissue engineering and regenerative medicine[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9(12):1321-1338.
    [6] [6] ZHANG Z C, HAN S, WANG C, et al. Single-walled carbon nanohorns for energy applications[J]. Nanomaterials, 2015, 5(4):1732-1755.
    [7] [7] VILAS V, PHILIP D, MATHEW J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications[J]. Materials Science & Engineering C, 2016, 61:429-436.
    [8] [8] DASTJERDI R, MONTAZER M. A review on the application of inorganic nano-structured materials in the modification of textiles:Focus on anti-microbial properties[J]. Colloids and Surfaces B, 2010, 79(1):5-18.
    [9] [9] GAO J, GU H, XU B. Multifunctional magnetic nanoparticles:Design, synthesis, and biomedical applications[J]. Accounts of Chemical Research, 2009, 42(8):1097-1107.
    [10] [10] MARIN S, VLASCEANU G M, TIPLEA R E, et al. Applications and toxicity of silver nanoparticles:A recent review[J]. Current Topics in Medicinal Chemistry, 2015, 15(16):1596-1604.
    [11] [11] LIU H L, YANG H L, LIN B C, et al. Toxic effect comparison of three typical sterilization nanoparticles on oxidative stress and immune inflammation response in rats[J]. Toxicology Research, 2015, 4(2):486-493.
    [12] [12] FENG X L, CHEN A J, ZHANG Y L, et al. Application of dental nanomaterials:Potential toxicity to the central nervous system[J]. International Journal of Nanomedicine, 2015, 10:3547-3565.
    [13] [13] TAYLOR U, TIEDEMANN D, REHBOCK C, et al. Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development[J]. Beilstein Journal of Nanotechnology, 2015, 6:651-664.
    [14] [14] SEIFFERT J, HUSSAIN F, WIEGMAN C, et al. Pulmonary toxicity of instilled silver nanoparticles:Influence of size, coating and rat strain[J]. PLoS One, 2015, 10(3):e0119726.
    [15] [15] CHEN L Q, FANG L, LING J, et al. Nanotoxicity of silver nanoparticles to red blood cells:Size dependent adsorption, uptake, and hemolytic activity[J]. Chemical Research in Toxicology, 2015, 28(3):501-509.
    [16] [16] JIANG X M, MICLAUS T, WANG L M, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells:Implication for cytotoxicity[J]. Nanotoxicology, 2015, 9(2):181-189.
    [17] [17] LIU W, QIAO X, WANG J, et al. Effects of combustion mode on exhaust particle size distribution produced by an engine fueled by dimethyl ether (DME)[J]. Energy & Fuels, 2008, 22(6):3838-3843.
    [18] [18] BERGVALL C, WESTERHOLM R. Determination of highly carcinogenic dibenzopyrene isomers in particulate emissions from two diesel-and two gasoline-fuelled light-duty vehicles[J]. Atmospheric Environment, 2009, 43(25):3883-3890.
    [19] [19] HUANG C, LOU D M, HU Z Y, et al. A pems study of the emissions of gaseous pollutants and ultrafine particles from gasoline-and diesel-fueled vehicles[J]. Atmospheric Environment, 2013, 77:703-710.
    [20] [20] GENS A, HURLEY J F, TUOMISTO J T, et al. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe[J]. Atmospheric Environment, 2014, 84:213-221.
    [21] [21] SUHAIMI N F, JALALUDIN J. Biomarker as a research tool in linking exposure to air particles and respiratory health[J]. Biomed Research International, 2015, 962853:1-10.
    [22] [22] JANSSEN N A H, HOEK G, SIMIC-LAWSON M, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5[J]. Environmental Health Perspectives, 2011, 119(12):1691-1699.
    [23] [23] MASKAOUI K, ZHOU J L. Colloids as a sink for certain pharmaceuticals in the aquatic environment[J]. Environmental Science and Pollution Research, 2010, 17(4):898-907.
    [24] [24] WANG Q, CHENG T, WU Y. Distinct roles of illite colloid and humic acid in mediating arsenate transport in water-saturated sand columns[J]. Water Air & Soil Pollution, 2015, 226(5):1-15.
    [25] [25] WU H Y, CHEN W L, RONG X M, et al. Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry[J]. Geomicrobiology Journal, 2014, 31(7):590-596.
    [26] [26] MURALI R, MURTHY C N, SENGUPTA R A. Adsorption studies of toxic metals and dyes on soil colloids and their transport in natural porous media[J]. International Journal of Environmental Science and Technology, 2015, 12(11):3563-3574.
    [27] [27] RASHAD A M. A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials-A short guide for civil engineer[J]. Materials & Design, 2013, 52:143-157.
    [28] [28] PAUL M C, BYSAKH S, DAS S, et al. Nano-engineered Yb2O3 doped optical fiber:Fabrication, material characterizations, spectroscopic properties and lasing characteristics:A review[J]. Science of Advanced Materials, 2012, 4(2):292-321.
    [29] [29] SHUKLA P, GUPTA G, SINGODIA D, et al. Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives[J]. Expert Opinion on Drug Delivery, 2010, 7(9):993-1011.
    [30] [30] GREIL P. Perspectives of nano-carbon based engineering materials[J]. Advanced Engineering Materials, 2015, 17(2):124-137.
    [31] [31] ZHANG J C, LIU D D, ZHOU G Q, et al. Application of nanomaterials in tissue engineering[J]. Progress in Chemistry, 2010, 22(11):2232-2237.
    [32] [32] NI J F, ZHANG L, FU S D, et al. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries[J]. Carbon, 2015, 92:15-25.
    [33] [33] AFREEN S, MUTHOOSAMY K, MANICKAM S, et al. Functionalized fullerene (c-60) as a potential nanomediator in the fabrication of highly sensitive biosensors[J]. Biosensors & Bioelectronics, 2015, 63:354-364.
    [34] [34] YANG K, FENG L Z, LIU Z. The advancing uses of nano-graphene in drug delivery[J]. Expert Opinion on Drug Delivery, 2015, 12(4):601-612.
    [35] [35] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes:Present and future commercial applications[J]. Science, 2013, 339(6119):535-539.
    [36] [36] DU J, WANG S T, YOU H, et al. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human:A review[J]. Environmental Toxicology and Pharmacology, 2013, 36(2):451-462.
    [37] [37] BARNA B P, JUDSON M A, THOMASSEN M J. Carbon nanotubes and chronic granulomatous disease[J]. Nanomaterials, 2014, 4(2):508-521.
    [38] [38] JACKSON P, JACOBSEN N R, BAUN A, et al. Bioaccumulation and ecotoxicity of carbon nanotubes[J]. Chemistry Central Journal, 2013, 7(1):1-21.
    [39] [39] LIANG B, LIU Y P, XU Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Journal of Power Sources, 2014, 267:469-490.
    [40] [40] DALDOSSO N, PAVESI L. Nanosilicon photonics[J]. Laser & Photonics Reviews, 2009, 3(6):508-534.
    [41] [41] BASHOUTI M Y, SARDASHTI K, SCHMITT S W, et al. Oxide-free hybrid silicon nanowires:From fundamentals to applied nanotechnology[J]. Progress in Surface Science, 2013, 88(1):39-60.
    [42] [42] COLLAERT N, ALIAN A, ARIMURA H, et al. Ultimate nano-electronics:New materials and device concepts for scaling nano-electronics beyond the Si roadmap[J]. Microelectronic Engineering, 2015, 132:218-225.
    [43] [43] RAD A S, ARDJMAND M. Use and effect of Si/Silica nano materials in polyurethane's structure[J]. Asian Journal of Chemistry, 2009, 21(5):3313-3333.
    [44] [44] LIN G R. Spectroscopic analysis on metal-oxide-semiconductor light-emitting diodes with buried Si nanocrystals and nano-pyramids in SiOx film[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(3):1092-1100.
    [45] [45] HUANG K, LIN K F, ZHANG W, et al. Toxicity of soluble cdte quantum dots on embryonic development of zebrafish[J]. Acta Scientiae Circumstantiae, 2011, 31(4):854-859.
    [46] [46] FARSHID B, LALWANI G, SITHARAMAN B. In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites[J]. Journal of Biomedical Materials Research A, 2015, 103(7):2309-2321.
    [47] [47] ZARRABI A, ADELI M, VOSSOUGHI M, et al. Design and synthesis of novel polyglycerol hybrid nanomaterials for potential applications in drug delivery systems[J]. Macromolecular Bioscience, 2011, 11(3):383-390.
    [48] [48] PRAMOD P S, SHAH R, CHAPHEKAR S, et al. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells[J]. Nanoscale, 2014, 6(20):11841-11855.
    [49] [49] OWENS D E, PEPPAS N A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. International Journal of Pharmaceutics, 2006, 307(1):93-102.
    [50] [50] THOMAS S P, DE S K, HUSSEIN I A. Impact of aspect ratio of carbon nanotubes on shear and extensional rheology of polyethylene nanocomposites[J]. Applied Rheology, 2013, 23(2):250-263.
    [51] [51] DEBROSSE M C, COMFORT K K, UNTENER E A, et al. High aspect ratio gold nanorods displayed augmented cellular internalization and surface chemistry mediated cytotoxicity[J]. Materials Science & Engineering C, 2013, 33(7):4094-4100.
    [52] [52] KHAN J A, QASIM M, SINGH B R, et al. Polyaniline/CoFe2O4 nanocomposite inhibits the growth of Candida albicans 077 by ROS production[J]. Comptes Rendus Chimie, 2014, 17(2):91-102.
    [53] [53] KRISHNA K S, LI Y H, LI S N, et al. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications[J]. Advanced Drug Delivery Reviews, 2013, 65(11-12):1470-1495.
    [54] [54] CAI L L, RAO P M, FENG Y Z, et al. Flame synthesis of 1-d complex metal oxide nanomaterials[J]. Proceedings of the Combustion Institute, 2013, 34:2229-2236.
    [55] [55] HUANG Z H, JIANG X L, GUO D W, et al. Controllable synthesis and biomedical applications of silver nanomaterials[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(11):9395-9408.
    [56] [56] SINGH R, MISRA V, SINGH R P. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles[J]. Environmental Monitoring and Assessment, 2012, 184(6):3643-3651.
    [57] [57] SCHRICK B, HYDUTSKY B W, BLOUGH J L, et al. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater[J]. Chemistry of Materials, 2004, 16(11):2187-2193.
    [58] [58] KUHN K M, DUBOIS J L, MAURICE P A. Aerobic microbial Fe acquisition from ferrihydrite nanoparticles:Effects of crystalline order, siderophores, and alginate[J]. Environmental Science & Technology, 2014, 48(15):8664-8670.
    [59] [59] PETERSEN E J, NELSON B C. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA[J]. Analytical and Bioanalytical Chemistry, 2010, 398(2):613-650.
    [60] [60] KROLL A, DIERKER C, ROMMEL C, et al. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays[J]. Particle and Fibre Toxicology, 2011, 8(1):1-19.
    [61] [61] JONES C F, GRAINGER D W. In vitro assessments of nanomaterial toxicity[J]. Advanced Drug Delivery Reviews, 2009, 61(6):438-456.
    [62] [62] BOUDREAU M D, IMAM M S, PAREDES A M, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks[J]. Toxicological Sciences, 2016, 150(1):131-160.
    [63] [63] CHO M, FORTNER J D, HUGHES J B, et al. Escherichia coli inactivation by water-soluble, ozonated C-60 derivative:Kinetics and mechanisms[J]. Environmental Science & Technology, 2009, 43(19):7410-7415.
    [64] [64] CHAE S R, WANG S Y, HENDREN Z D, et al. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control[J]. Journal of Membrane Science, 2009, 329(1-2):68-74.
    [65] [65] MILANESIO M E, SPESIA M B, CORMICK M P, et al. Mechanistic studies on the photodynamic effect induced by a dicationic fullerene C-60 derivative on Escherichia coli and Candida albicans cells[J]. Photodiagnosis and Photodynamic Therapy, 2013, 10(3):320-327.
    [66] [66] DAI J, WANG C, SHANG CI, et al. Comparison of the cytotoxic responses of Escherichia coli (E. Coli) AMC 198 to different fullerene suspensions (nC(60))[J]. Chemosphere, 2012, 87(4):362-368.
    [67] [67] WANG C, WANG L, WANG Y, et al. Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens[J]. Environmental Earth Sciences, 2011, 65(6):1643-1649.
    [68] [68] MATSUDA S, MATSUI S, SHIMIZU Y, et al. Genotoxicity of colloidal fullerene C-60[J]. Environmental Science & Technology, 2011, 45(9):4133-4138.
    [69] [69] DING L H, STILWELL J, ZHANG T T, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast[J]. Nano Letters, 2005, 5(12):2448-2464.
    [70] [70] PATLOLLA A, KNIGHTEN B, TCHOUNWOU P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells[J]. Ethnicity & Disease, 2010, 20(1):65-72.
    [71] [71] JACOBSEN N R, POJANA G, WHITE P, et al. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C-60 fullerenes in the FE1-Muta (TM) mouse lung epithelial cells[J]. Environmental and Molecular Mutagenesis, 2008, 49(6):476-487.
    [72] [72] DROR-EHRE A, MAMANE H, BELENKOVA T, et al. Silver nanoparticle-E. Coli colloidal interaction in water and effect on E-coli survival[J]. Journal of Colloid and Interface Science, 2009, 339(2):521-526.
    [73] [73] LUBICK N. Nanosilver toxicity:Ions, nanoparticles-or both?[J]. Environmental Science & Technology, 2008, 42(23):8617-8617.
    [74] [74] SUN C, YIN N Y, WEN R X, et al. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions[J]. Neurotoxicology, 2016, 52:210-221.
    [75] [75] UMEZAWA M, TAINAKA H, KAWASHIMA N, et al. Effect of fetal exposure to titanium dioxide nanoparticle on brain development-brain region information[J]. Journal of Toxicological Sciences, 2012, 37(6):1247-1252.
    [76] [76] MKANDAWIRE M M, LAKATOS M, SPRINGER A, et al. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles[J]. Nanoscale, 2015, 7(24):10634-10640.
    [77] [77] HADRUP N, SHARMA A K, POULSEN M, et al. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles-a review[J]. Regulatory Toxicology and Pharmacology, 2015, 72(2):216-221.
    [78] [78] ZHANG Y, SHAREENA D T P, DENG H, et al. Antimicrobial activity of gold nanoparticles and ionic gold[J]. Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews, 2015, 33(3):286-327.
    [79] [79] VOLLAND M, HAMPEL M, MARTOS-SITCHA J A, et al. Citrate gold nanoparticle exposure in the marine bivalve ruditapes philippinarum:Uptake, elimination and oxidative stress response[J]. Environmental Science and Pollution Research, 2015, 22(22):17414-17424.
    [80] [80] AHAMED M, ALHADLAQ H A, ALAM J, et al. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines[J]. Current Pharmaceutical Design, 2013, 19(37):6681-6690.
    [81] [81] WANG Z Y, LI N, ZHAO J, et al. CuO nanoparticle interaction with human epithelial cells:Cellular uptake, location, export, and genotoxicity[J]. Chemical Research in Toxicology, 2012, 25(7):1512-1521.
    [82] [82] YU C, ZHOU Z G, WANG J, et al. In depth analysis of apoptosis induced by silica coated manganese oxide nanoparticles in vitro[J]. Journal of Hazardous Materials, 2015, 283:519-528.
    [83] [83] PASSAGNE I, MORILLE M, ROUSSET M, et al. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells[J]. Toxicology, 2012, 299(2-3):112-124.
    [84] [84] WANG F, GAO F, LAN M B, et al. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells[J]. Toxicology in Vitro, 2009, 23(5):808-815.
    [85] [85] ADAMS L K, LYON D Y, ALVAREZ P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19):3527-3532.
    [86] [86] PETIT A N, EULLAFFROY P, DEBENEST T, et al. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2010, 100(2):187-193.
    [87] [87] WEI L P, THAKKAR M, CHEN Y H, et al. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta[J]. Aquatic Toxicology, 2010, 100(2):194-201.
    [88] [88] ARUOJA V, DUBOURGUIER HC, KASEMETS K, et al. Toxicity of nanoparticles of Cuo, Zno and TiO2 to microalgae pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4):1461-1468.
    [89] [89] MARTINS J, OLIVA TELES L, VASCONCELOS V. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology[J]. Environment International, 2007, 33(3):414-425.
    [90] [90] HUND-RINKE K, SIMON M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids[J]. Environmental Science and Pollution Research, 2006, 13(4):225-232.
    [91] [91] KLAPER R, CRAGO J, BARR J, et al. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles:Changes in toxicity with functionalization[J]. Environmental Pollution, 2009, 157(4):1152-1156.
    [92] [92] ZHU X S, ZHU L, CHEN Y S, et al. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna[J]. Journal of Nanoparticle Research, 2009, 11(1):67-75.
    [93] [93] PACE H E, LESHER E K, RANVILLE J F. Influence of stability on the acute toxicity of CdSe/Zns nanocrystals to Daphnia magna[J]. Environmental Toxicology and Chemistry, 2010, 29(6):1338-1344.
    [94] [94] ZHU X S, CHANG Y, CHEN Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna[J]. Chemosphere, 2010, 78(3):209-215.
    [95] [95] ZHU S Q, OBERDORSTER E, HAASCH M L. Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow[J]. Marine Environmental Research, 2006, 62:S5-S9.
    [96] [96] ZHU X S, ZHU L, DUAN Z H, et al. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(3):278-284.
    [97] [97] CHOI J E, KIM S, AHN J H, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish[J]. Aquatic Toxicology, 2010, 100(2):151-159.
    [98] [98] GRIFFITT R J, HYNDMAN K, DENSLOW N D, et al. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles[J]. Toxicological Sciences, 2009, 107(2):404-415.
    [99] [99] ASHARANI P V, WU Y L, GONG Z Y, et al. Toxicity of silver nanoparticles in zebrafish models[J]. Nanotechnology, 2008, 19(25):711-717.
    [100] [100] BILBERG K, HOVGAARD M B, BESENBACHER F, et al. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio)[J]. Journal of Toxicology, 2012, 293784:1-9.
    [101] [101] GRIFFITT R J, LUO J, GAO J, et al. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1972-1978.
    [102] [102] BILBERG K, MALTE H, WANG T, et al. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis)[J]. Aquatic Toxicology, 2010, 96(2):159-165.
    [103] [103] JUNG Y J, KIM K T, KIM J Y, et al. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes)[J]. Journal of Hazardous Materials, 2014, 267:206-213.
    [104] [104] PHAM C H, YI J, GU M B. Biomarker gene response in male medaka (Oryzias latipes) chronically exposed to silver nanoparticle[J]. Ecotoxicology and Environmental Safety, 2012, 78:239-245.
    [105] [105] CHAE Y J, PHAM C H, LEE J, et al. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2009, 94(4):320-327.
    [106] [106] ZHU X, ZHU L, LANG Y, et al. Oxidative stress and growth inhibition in the freshwater fish carassius auratus induced by chronic exposure to sublethal fullerene aggregates[J]. Environ Toxicol Chem, 2008, 27(9):1979-1985.
    [107] [107] CANESI L, FABBRI R, GALLO G, et al. Biomarkers in mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2)[J]. Aquatic Toxicology, 2010, 100(2):168-177.
    [108] [108] TREVISAN R, DELAPEDRA G, MELLO D F, et al. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress[J]. Aquat Toxicol, 2014, 153:27-38.
    [109] [109] RINGWOOD A H, MCCARTHY M, BATES T C, et al. The effects of silver nanoparticles on oyster embryos[J]. Marine Environmental Research, 2010, 69 Suppl:S49-51.
    [110] [110] TAYLOR U, GARRELS W, BARCHANSKI A, et al. Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development[J]. Beilstein Journal of Nanotechnology, 2014, 5:677-688.
    [111] [111] WEN R, YANG X, HU L, et al. Brain-targeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in sprague-dawley rats[J]. Journal of Applied Toxicology, 2016, 36(3):445-453.
    [112] [112] VAN DER ZANDE M, VANDEBRIEL R J, VAN DOREN E, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure[J]. ACS Nano, 2012, 6(8):7427-7442.
    [113] [113] BRAAKHUIS H M, GOSENS I, KRYSTEK P, et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles[J]. Particle and Fibre Toxicology, 2014, 11:doi:10.1186/s 12989-014-0049-1.
    [114] [114] ROSSI E M, PYLKKANEN L, KOIVISTO A J, et al. Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice[J]. Journal of Toxicological Sciences, 2010, 113(2):422-433.
    [115] [115] KREYLING W G, SEMMLER-BEHNKE M, SEITZ J, et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs[J]. Inhalation Toxicology, 2009, 21 Suppl 1:55-60.
    [116] [116] VAN RAVENZWAAY B, LANDSIEDEL R, FABIAN E, et al. Comparing fate and effects of three particles of different surface properties:Nano-TiO(2), pigmentary TiO(2) and quartz[J]. Toxicology Letters, 2009, 186(3):152-159.
    [117] [117] VAN DER ZANDE M, PETERS R J B, PEIJNENBURG A A, et al. Bioistribution and toxicity of silver nanoparticles in rats after subchronic oral administration[J]. Toxicology Letters, 2011, 205:S289-S289.
    [118] [118] BURGERT J M. Argyria resulting from chronic use of colloidal silver in a patient presenting for colonoscopy[J]. A&A Case Report, 2014, 3(6):73-75.
    [119] [119] LIN Z, MONTEIRO-RIVIERE N A, RIVIERE J E. Pharmacokinetics of metallic nanoparticles[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2015, 7(2):189-217.
    [120] [120] SEMMLER-BEHNKE M, KREYLING W G, SCHULZ H, et al. Nanoparticle delivery in infant lungs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):5092-5097.
    [121] [121] GARZA-OCANAS L, FERRER D A, BURT J, et al. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats[J]. Metallomics, 2010, 2(3):204-210.
    [122] [122] YOKOYAMA H, ONO T, MORIMOTO Y, et al. Noninvasive in vivo electron paramagnetic resonance study to estimate pulmonary reducing ability in mice exposed to NiO or C60 nanoparticles[J]. Journal of Magnetic Resonance Imaging, 2009, 29(6):1432-1437.
    [123] [123] SUNG J H, JI J H, PARK J D, et al. Subchronic inhalation toxicity of silver nanoparticles[J]. Toxicological Science, 2009, 108(2):452-461.
    [124] [124] HAN S G, LEE J S, AHN K, et al. Size-dependent clearance of gold nanoparticles from lungs of sprague-dawley rats after short-term inhalation exposure[J]. Archives of Toxicology, 2015, 89(7):1083-1094.
    [125] [125] SUNG J H, JI J H, PARK J D, et al. Subchronic inhalation toxicity of gold nanoparticles[J]. Particle and Fibre Toxicology, 2011, 8(1):7-13.
    [126] [126] LIU J, WANG Z, LIU F D, et al. Chemical transformations of nanosilver in biological environments[J]. ACS Nano, 2012, 6(11):9887-9899.
    [127] [127] HUSAIN M, SABER A T, GUO C, et al. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation[J]. Toxicology and Applied Pharmacology, 2013, 269(3):250-262.
    [128] [128] SHINOHARA N, NAKAZATO T, OHKAWA K, et al. Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation[J]. Ournal of Applied Toxicology, 2016, 36(4):501-509.
    [129] [129] HOUGAARD K S, CAMPAGNOLO L, CHAVATTE-PALMER P, et al. A perspective on the developmental toxicity of inhaled nanoparticles[J]. Reproductive Toxicology, 2015, 56:118-140.
    [130] [130] YAMASHITA K, YOSHIOKA Y, HIGASHISAKA K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice[J]. Nature Nanotechnology, 2011, 6(5):321-328.
    [131] [131] DI BONA K R, XU Y, RAMIREZ P A, et al. Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice[J]. Reproductive Toxicology, 2014, 50:36-42.
    [132] [132] GHADERI S, TABATABAEI S R, VARZI H N, et al. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice[J]. Journal of Toxicological Sciences, 2015, 40(2):263-275.
    [133] [133] PIETROIUSTI A, MASSIMIANI M, FENOGLIO I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development[J]. ACS Nano, 2011, 5(6):4624-4633.
    [134] [134] TIAN X, ZHU M, DU L, et al. Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy[J]. Small, 2013, 9(14):2432-2439.
    [135] [135] LIU Y, GUAN W, REN G, et al. The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats[J]. Toxicology Letters, 2012, 209(3):227-231.
    [136] [136] WU J, YU C, TAN Y, et al. Effects of prenatal exposure to silver nanoparticles on spatial cognition and hippocampal neurodevelopment in rats[J]. Environmental Research, 2015, 138:67-73.
    [137] [137] GAO J, ZHANG X, YU M, et al. Cognitive deficits induced by multi-walled carbon nanotubes via the autophagic pathway[J]. Toxicology, 2015, 337:21-29.
    [138] [138] TIAN L, LIN B, WU L, et al. Neurotoxicity induced by zinc oxide nanoparticles:Age-related differences and interaction[J]. Scientific Reports, 2015, 5:16117.
    [139] [139] ZE Y, HU R, WANG X, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2014, 102(2):470-478.
    [140] [140] QIN F, YUAN H, NIE J, et al. Effects of nano-selenium on cognition performance of mice exposed in 1800 MHz radiofrequency fields[J]. Journal of Hygiene Research, 2014, 43(1):16-21.
    [141] [141] LIU P, HUANG Z, GU N. Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice[J]. Ecotoxicology and Environmental Safety, 2013, 87:124-130.
    [142] [142] JOHANNESSON G, MOYA-ORTEGA M D, ASGRIMSDOTTIR G M, et al. Dorzolamide cyclodextrin nanoparticle suspension eye drops and trusopt in rabbit[J]. Journal of Ocular Pharmacology and Therapeutics, 2014, 30(6):464-467.
    [143] [143] EVLIYAOGLU Y, KOBANER M, CELEBI H, et al. The efficacy of a novel antibacterial hydroxyapatite nanoparticle-coated indwelling urinary catheter in preventing biofilm formation and catheter-associated urinary tract infection in rabbits[J]. Urol Res, 2011, 39(6):443-449.
    [144] [144] YI F, WU H, JIA G L, et al. Effect of nanoparticle with vascular endothelial growth factor gene transferred into ischemic myocardium:Experiment with rabbits[J]. National Medical Journal of China, 2006, 86(8):510-514.
    [145] [145] FEI W L, CHEN J Q, ZHONG S L, et al. The pharmacokinetics of FK506 and its nanoparticles in aqueous humor of rabbits[J]. Chinese Journal of Ophthalmology, 2006, 42(4):305-308.
    [146] [146] YANG G, CHEN X, HUANG Z, et al. Arterial embolization with the mixture of hydroxyapatite nanoparticle and iodized oil treating VX2 liver tumor in the rabbits[J]. Chinese Journal of Experimental Surgery, 2007, 24(3):288-289.
    [147] [147] GUAN H, LI Y, ZHENG Y, et al. Nanoparticle as a new gene transferring vector in specific expression gene[J]. Chinese Medical Sciences Journal, 2002, 82(5):341-344.
    [148] [148] WANG C, WANG M Q, YE S S, et al. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers[J]. Poultry Science, 2011, 90(10):2223-2228.
    [149] [149] ANNAMALAI T, PINA-MIMBELA R, KUMAR A, et al. Evaluation of nanoparticle-encapsulated outer membrane proteins for the control of Campylobacter jejuni colonization in chickens[J]. Poultry Science, 2013, 92(8):2201-2211.
    [150] [150] MAHLER G J, ESCH M B, TAKO E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271.
    [151] [151] HALEY B, FRENKEL E. Nanoparticles for drug delivery in cancer treatment[J]. Urologic Oncology, 2008, 26(1):57-64.
    [152] [152] ARAYNE M S, SULTANA N. Review:Nanoparticles in drug delivery for the treatment of cancer[J]. Pakistan Journal of Pharmaceutical Sciences, 2006, 19(3):258-268.
    [153] [153] SUN T, ZHANG Y S, PANG B, et al. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angewandte Chemie International Edition, 2014, 53(46):12320-12364.
    [154] [154] WADHERA A, FUNG M. Systemic argyria associated with ingestion of colloidal silver[J]. Dermatology Online Journal, 2005, 11(1):12.
    [155] [155] VAN DE VOORDE K, NIJSTEN T, SCHELFHOUT K, et al. Long-term use of silver containing nose-drops resulting in systemic argyria[J]. Acta Clinica Belgica, 2005, 60(1):33-35.
    [156] [156] SCHNEIDER T, JENSEN K A. Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles[J]. Journal of Nanoparticle Research, 2009, 11(7):1637-1650.
    [157] [157] LEE J H, KWON M, JI J H, et al. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver[J]. Inhalation Toxicology, 2011, 23(4):226-236.
    [158] [158] PIETROIUSTI A, MAGRINI A. Engineered nanoparticles at the workplace:Current knowledge about workers' risk[J]. Occupational Medicine-Oxford, 2014, 64(5):319-330.
    [159] [159] XING M L, ZHANG Y B, ZOU H, et al. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials[J]. Inhalation Toxicology, 2015, 27(3):138-148.
    [160] [160] KARIM M, MUNIR A, REZA A, et al. Too enthusiastic to care for safety:Present status and recent developments of nanosafety in ASEAN countries[J]. Technological Forecasting & Social Change, 2015, 92:168-181.
    [161] [161] CHITHRANI B D, GHAZANI A A, CHAN WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Letters, 2006, 6(4):662-668.
    [162] [162] QIU Y, LIU Y, WANG L, et al. Surface chemistry and aspect ratio mediated cellular uptake of au nanorods[J]. Biomaterials, 2010, 31(30):7606-7619.
    [163] [163] GRATTON S E, ROPP P A, POHLHAUS P D, et al. The effect of particle design on cellular internalization pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33):11613-11618.
    [164] [164] VENKATARAMAN S, HEDRICK J L, ONG Z Y, et al. The effects of polymeric nanostructure shape on drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(14-15):1228-1246.
    [165] [165] MOGHIMI S M, HUNTER A C, MURRAY J C. Long-circulating and target-specific nanoparticles:Theory to practice[J]. Pharmacological Reviews, 2001, 53(2):283-318.
    [166] [166] TAO L, HU W, LIU Y L, et al. Shape-specific polymeric nanomedicine:Emerging opportunities and challenges[J]. Experimental Biology and Medicine, 2011, 236(1):20-29.
    [167] [167] MURO S, GARNACHO C, CHAMPION J A, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers[J]. Molecular Therapy, 2008, 16(8):1450-1458.
    [168] [168] LIU Z, CAI W B, HE L N, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice[J]. Nature Nanotechnology, 2007, 2(1):47-52.
    [169] [169] PARK J H, VON MALTZAHN G, ZHANG L L, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting[J]. Small, 2009, 5(6):694-700.
    [170] [170] ORTA-GARCIA S T, PLASCENCIA-VILLA G, OCHOA-MARTINEZ A C, et al. Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells ‘in vitro’[J]. Journal of Applied Toxicology, 2015, 35(10):1189-1199.
    [171] [171] CARLSON C, HUSSAIN S M, SCHRAND A M, et al. Unique cellular interaction of silver nanoparticles:Size-dependent generation of reactive oxygen species[J]. Journal of Physical Chemistry B, 2008, 112(43):13608-13619.
    [172] [172] LIU W, WU Y, WANG C, et al. Impact of silver nanoparticles on human cells:Effect of particle size[J]. Nanotoxicology, 2010, 4(3):319-330.
    [173] [173] ANDERSON D S, SILVA R M, LEE D, et al. Persistence of silver nanoparticles in the rat lung:Influence of dose, size, and chemical composition[J]. Nanotoxicology, 2015, 9(5):591-602.
    [174] [174] SCHADLICH A, CAYSA H, MUELLER T, et al. Tumor accumulation of nir fluorescent PEG-PLA nanoparticles:Impact of particle size and human xenograft tumor model[J]. ACS Nano, 2011, 5(11):8710-8720.
    [175] [175] SUN X K, ROSSIN R, TURNER J L, et al. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface pegylation on in vivo biodistribution[J]. Biomacromolecules, 2005, 6(5):2541-2554.
    [176] [176] LIU Y J, IBRICEVIC A, COHEN J A, et al. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics[J]. Molecular Pharmaceutics, 2009, 6(6):1891-1902.
    [177] [177] WANG Y J, CHEN P P, ZHAO G S, et al. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo[J]. Food and Chemical Toxicology, 2015, 85:71-77.
    [178] [178] EL BADAWY A M, SILVA R G, MORRIS B, et al. Surface charge-dependent toxicity of silver nanoparticles[J]. Environmental Science & Technology, 2011, 45(1):283-287.
    [179] [179] GLIGA A R, SKOGLUND S, WALLINDER I O, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells:The role of cellular uptake, agglomeration and ag release[J]. Particle and Fibre Toxicology, 2014, 11:doi:1001186/1743-8977-11-11.
    [180] [180] LONG Y M, ZHAO X C, CLERMONT A C, et al. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction[J]. Nanotoxicology, 2016, 10(4):501-511.
    [181] [181] QU F, XU H, XIONG Y, et al. Research progress in bactericidal mechanisms of nano-silver[J]. Food Science, 2010, 31(17):420-424.
    [182] [182] BASIRUDDIN S K, SAHA A, PRADHAN N, et al. Advances in coating chemistry in deriving soluble functional nanoparticle[J]. Journal of Physical Chemistry C, 2010, 114(25):11009-11017.
    [183] [183] ALISSAWI N, ZAPOROJTCHENKO V, STRUNSKUS T, et al. Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier[J]. Journal of Nanoparticle Research, 2012, 14(7):854-859.
  • 加载中
计量
  • 文章访问数:  2192
  • HTML全文浏览数:  1918
  • PDF下载数:  1195
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-05-13
  • 刊出日期:  2017-01-15
文若曦, 孙振东, 周群芳, 江桂斌. 人工合成纳米材料的生物可给性与毒性[J]. 环境化学, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
引用本文: 文若曦, 孙振东, 周群芳, 江桂斌. 人工合成纳米材料的生物可给性与毒性[J]. 环境化学, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
WEN Ruoxi, SUN Zhendong, ZHOU Qunfang, JIANG Guibin. Bioavailability and toxicity of engineered nanomaterials[J]. Environmental Chemistry, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303
Citation: WEN Ruoxi, SUN Zhendong, ZHOU Qunfang, JIANG Guibin. Bioavailability and toxicity of engineered nanomaterials[J]. Environmental Chemistry, 2017, 36(1): 1-15. doi: 10.7524/j.issn.0254-6108.2017.01.2016051303

人工合成纳米材料的生物可给性与毒性

  • 1.  中国科学技术大学, 地球和空间科学学院, 合肥, 230026;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 3.  中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(21461142001,21477153)和中国科学院重大专项B(14040302)资助.

摘要: 随着人工纳米材料在工业、生活、医疗等各领域中的广泛应用,其环境暴露已不可避免.由于纳米材料生物可给性决定了其环境危害与人体健康风险,因此近年来这方面的研究已成为环境科学领域关注的热点.本文基于细胞和微生物、动物、人体等,从纳米材料种类、暴露途径、摄入动力学、体内分布、消除行为等方面,对人工纳米材料的生物可给性与毒性进行了综述,为客观评价纳米材料的生物安全性提供了科学参考.

English Abstract

参考文献 (183)

返回顶部

目录

/

返回文章
返回