V2O5/TiO2基催化剂催化转化1,2-二氯苯

杜翠翠, 王秋麟, 陆胜勇, 严建华. V2O5/TiO2基催化剂催化转化1,2-二氯苯[J]. 环境化学, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
引用本文: 杜翠翠, 王秋麟, 陆胜勇, 严建华. V2O5/TiO2基催化剂催化转化1,2-二氯苯[J]. 环境化学, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
DU Cuicui, WANG Qiulin, LU Shengyong, YAN Jianhua. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
Citation: DU Cuicui, WANG Qiulin, LU Shengyong, YAN Jianhua. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001

V2O5/TiO2基催化剂催化转化1,2-二氯苯

  • 基金项目:

    国家自然科学基金(51276162)和浙江省自然科学基金(R14E060001)资助.

Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts

  • Fund Project: Supported by National Natural Science Foundation of China (51276162)and Zhejiang Provincial Natural Science Foundation of China (R14E060001).
  • 摘要: 实验研究了溶胶凝胶法制备催化剂过程中钒元素的初始价态(V4+或V5+)对焙烧后催化剂特性的影响,并考察了催化剂在150-350℃温度范围内对1,2-二氯苯(1,2-DCBz)的催化转化效果.通过低温氮气吸附、X射线衍射(X-ray diffraction,XRD)、光电子能谱(X-ray photoelectron spectroscopy,XPS)、氢气程序升温还原(H2 Temperature programmed reduction,H2-TPR)、以及色散光谱(Energy dispersive spectroscopy,EDS)来获取催化剂的基本特性.结果表明,在催化剂制备过程中,将偏钒酸铵中的V5+还原至V4+可以有效改善焙烧后催化剂V2O5/TiO2理化特性,提高1,2-二氯苯的催化转化效率.150℃时,1,2-二氯苯转化率由43%增加至62%,而在220-350℃范围内,转化效率提升仍大于10%.这与催化剂吸附能力和氧化能力的共同增强有关.根据催化剂表征结果可知,与未还原处理的V2O5/TiO2相比,还原处理后催化剂的比表面积和总孔容分别增加了22 m2·g-1和0.09 cm3·g-1,且孔径尺寸在2-3 nm的孔容积增大.这些特性都有助于催化剂吸附能力的提升.此外,还原处理后催化剂中V的平均化合价和表面吸附氧浓度增大.V的平均化合价由4.64增大至4.72,表面吸附氧浓度由11%增大至13%,表明催化剂氧化能力增强.然而该方法对V2O5/TiO2-CNTs催化剂的催化活性影响较小.
  • 加载中
  • [1] BERTINCHAMPS F, GREGOIRE C, GAIGNEAUX E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics-part I:Identification of the optimal main active phases and supports[J]. Applied Catalysis B:Environmental, 2006, 66(1/2):1-9.
    [2] BERTINCHAMPS F, POLEUNIS C, GREGOIRE C, et al. Elucidation of deactivation or resistance mechanisms of CrOx, VOx, and MnOx supported phases in the total oxidation of chlorobenzene via ToF-SIMS and XPS analyses[J]. Surface and Interface Analysis, 2008, 40(3-4):231-236.
    [3] MA X D, SUN Q, FENG X, et al. Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/alpha-Fe2O3 nanocomposite catalysts[J]. Applied Catalysis A:General, 2013, 450:143-151.
    [4] YANG Y, HUANG J, ZHANG S Z, et al. Catalytic removal of gaseous HCBz on Cu doped OMS:Effect of Cu location on catalytic performance[J]. Applied Catalysis B:Environmental, 2014, 150-151:167-178.
    [5] CHO C H, IHM S K. Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants[J]. Environmental Science & Technology, 2002, 36(7):1600-1666.
    [6] KRISHNAMOORTHY S, RIVAS J A, AMIRIDIS M D. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides[J]. Journal of Catalysis, 2000, 193(2):264-272.
    [7] HAGENMAIER H, TICHACZEK K H, BRUNNER H, et al. Application of DENOx-catalysts for the reduction of emissions of PCDD/PCDF and other PICs from waste incineration facilities by catalytic oxidation[M]. Municipal Waste Combustion, 1991.
    [8] IDE Y, KASHIWABARA K, OKADA S, et al. Catalytic decomposition of dioxin from MSW incinerator flue gas[J]. Chemosphere, 1996, 32(1):189-198.
    [9] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1):113-139.
    [10] KRISHNAMOORTHY S, BAKER J P, AMIRIDIS M D. Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts[J]. Catalysis Today, 1998, 40(1):39-46.
    [11] WEBER R, SAKURAI T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst:evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B:Environmental, 2001, 34(2):113-127.
    [12] WIELGOSIN'SKI G, GROCHOWALSKI A, MACHEJ T, et al. Catalytic destruction of 1, 2-dichlorobenzene on V2O5-WO3/Al2O3-TiO2 catalyst[J]. Chemosphere, 2007, 67(9):S150-S154.
    [13] ALBONETTI S, MENGOU J E, TRIFIR F. Polyfunctionality of DeNOx catalysts in other pollutant abatement[J]. Catalysis Today, 2007, 119(1):295-300.
    [14] HIRAOKA M, TAKEDA N, KASAKURA T, et al. Catalytic destruction of PCDDs/PCFFs in municipal solid waste flue gas[J]. Chemosphere, 1991, 23(8):1445-1452.
    [15] EVERAERT K, BAEYENS J. Removal of PCDD/F from flue gases in fixed or moving bed adsorbers[J]. Waste Management, 2004, 24(1):37-42.
    [16] SHIN D, CHOI S, OH J E, et al. Evaluation of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emission in municipal solid waste incinerators[J]. Environmental Science & Technology, 1999, 33(15):2657-2666.
    [17] YANG C C, CHANG S H, HONG B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts[J]. Chemosphere, 2008, 73(6):890-895.
    [18] 翟丽军, 胡志勇, 牛宇岚. 电导率法对偏钒酸铵在草酸溶液中的溶解研究[J]. 应用化工, 2008, 37(9):1032-1034.

    ZHAI L J, HU Z Y, NIU Y L. Solubility of ammonium metavanadate in the oxalate solution by conductivity[J]. Applied Chemical Industry, 2008, 37(9):1032-1034(in Chinese).

    [19] MURILLO R, GARCıA T, AYL N E, et al. Adsorption of phenanthrene on activated carbons:Breakthrough curve modeling[J]. Carbon, 2004, 42(10):2009-2017.
    [20] HARLIN M, NIEMI V, KRAUSE A. Alumina-supported vanadium oxide in the dehydrogenation of butanes[J]. Journal of Catalysis, 2000, 195(1):67-78.
    [21] KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
    [22] BERTINCHAMPS F, TREINEN M, ELOY P, et al. Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs[J]. Applied Catalysis B:Environmental, 2007, 70(1-4):360-369.
    [23] CHEN L, LI J, GE M. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. The Journal of Physical Chemistry C, 2009, 113(50):21177-21184.
  • 加载中
计量
  • 文章访问数:  1599
  • HTML全文浏览数:  1537
  • PDF下载数:  687
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-05-20
  • 刊出日期:  2017-01-15
杜翠翠, 王秋麟, 陆胜勇, 严建华. V2O5/TiO2基催化剂催化转化1,2-二氯苯[J]. 环境化学, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
引用本文: 杜翠翠, 王秋麟, 陆胜勇, 严建华. V2O5/TiO2基催化剂催化转化1,2-二氯苯[J]. 环境化学, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
DU Cuicui, WANG Qiulin, LU Shengyong, YAN Jianhua. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001
Citation: DU Cuicui, WANG Qiulin, LU Shengyong, YAN Jianhua. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1): 141-146. doi: 10.7524/j.issn.0254-6108.2017.01.2016052001

V2O5/TiO2基催化剂催化转化1,2-二氯苯

  • 1.  浙江大学能源清洁利用国家重点实验室, 浙江大学, 杭州, 310027;
  • 2.  能源动力工程学院, 上海科技大学, 上海, 200093
基金项目:

国家自然科学基金(51276162)和浙江省自然科学基金(R14E060001)资助.

摘要: 实验研究了溶胶凝胶法制备催化剂过程中钒元素的初始价态(V4+或V5+)对焙烧后催化剂特性的影响,并考察了催化剂在150-350℃温度范围内对1,2-二氯苯(1,2-DCBz)的催化转化效果.通过低温氮气吸附、X射线衍射(X-ray diffraction,XRD)、光电子能谱(X-ray photoelectron spectroscopy,XPS)、氢气程序升温还原(H2 Temperature programmed reduction,H2-TPR)、以及色散光谱(Energy dispersive spectroscopy,EDS)来获取催化剂的基本特性.结果表明,在催化剂制备过程中,将偏钒酸铵中的V5+还原至V4+可以有效改善焙烧后催化剂V2O5/TiO2理化特性,提高1,2-二氯苯的催化转化效率.150℃时,1,2-二氯苯转化率由43%增加至62%,而在220-350℃范围内,转化效率提升仍大于10%.这与催化剂吸附能力和氧化能力的共同增强有关.根据催化剂表征结果可知,与未还原处理的V2O5/TiO2相比,还原处理后催化剂的比表面积和总孔容分别增加了22 m2·g-1和0.09 cm3·g-1,且孔径尺寸在2-3 nm的孔容积增大.这些特性都有助于催化剂吸附能力的提升.此外,还原处理后催化剂中V的平均化合价和表面吸附氧浓度增大.V的平均化合价由4.64增大至4.72,表面吸附氧浓度由11%增大至13%,表明催化剂氧化能力增强.然而该方法对V2O5/TiO2-CNTs催化剂的催化活性影响较小.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回