渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命
Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system
-
摘要: 渗透反应格栅(PRB)相对于传统的抽出处理技术是一种新兴的原位处理技术,在大多数情况下,它的运行不依靠外部力量或能源的输入,而是应用原位的地下水流来带动污染物与反应材料接触,最终将污染物去除.本文以地下水中六价铬(Cr(Ⅵ))去除为例,总结了PRB材料筛选过程;介绍了部分PRB场地应用实例,包括不同材料、结构类型、尺寸和PRB处理目标污染物的效果,及以零价铁(Fe0)为填充介质的PRB寿命研究现状.Fe0是实际场地PRB和实验室PRB材料研究中应用最广的材料.维持渗透反应墙的活性和渗透性能,是PRB能长期有效运行的重要条件.详细了解反应墙对污染物的去除机理,对于评价PRB的长期运行效果至关重要.Abstract: Permeable reactive barrier (PRB) is a burgeoning technology compared with the traditional pump-treat technology. In most cases, it removes the pollutant by relying on the groundwater flow to drive the contact of pollutants with the reactive materials without the input of external force and energy. Using Cr(Ⅵ) removed in groundwater as an example, this paper summarized the selection process of the filling material, described some PRB applications including the materials, structure type, size and the treatment efficiency, and discussed the current situation of the longevity of Fe0-PRB. Zero valence iron is the most common material used in the experimental research and field project. It is significant to maintain the activity and permeability of the PRB. The understanding of removal mechanism of the contaminant is essential to evaluate the long-time running effectiveness of PRB.
-
Key words:
- PRB /
- examples of remediation technology /
- removal materials of Cr(Ⅵ) /
- longevity of PRB
-
-
[1] STARR R C, CHERRY J A. In situ remediation of contaminated ground water:The funnel-and-gate system[J]. Ground Water, 1994, 32(3):465-476. [2] 胡莺. 地下水污染修复技术研究进展——零价铁PRB技术的应用与实践[J].云南地理环境研究, 2007, 19(1):11-15. HU Y. Research on groundwater remediation-application and practice of Fe0-PRB[J]. Yunnan Geographic Environment Research, 2007, 19(1):11-15(in Chinese).
[3] ITRC. Permeable reactive barriers:lessons learned/new directions[M]. Interstate Technology & Regulatory Council, 2005:2-3. [4] PHILLIPS D H. Permeable reactive barriers:A sustainable technology for cleaning contaminated groundwater in developing countries[J]. Desalination, 2009, 248(1/3):352-359. [5] U.S. EPA. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water:Volume 1 design and installation[M]. U.S. Environmental Protection Agency, Office of Research and Development Washington DC, 1999. [6] GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2):41-71. [7] 陆泗进,王红旗. 地下水污染修复的可渗透性反应墙技术[J]. 上海环境科学, 2005, 24(6):231-236. LU S J, Wang H Q. Permeable reactive barrier technology for remedy of contaminated groundwater[J]. Shanghai Environmental Science, 2005, 24(6):231-236(in Chinese).
[8] BLOWES D W, PTACEK C J, BENNER S G, et al. Treatment of dissolved metals using permeable reactive barriers[J]. Groundwater Quality:Remediation and Protection, 1998, 250:483-490. [9] BLOWES D W, PTACEK C J. In-situ remediation of Cr(Ⅵ)-contaminated groundwater using permeable reactive walls:Laboratory studies[J]. Environmental Science and Technology, 1997, 31(12):3348-3357. [10] LI Z H, JONES H K, ZHANG P F, et al. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets[J]. Chemosphere. 2007, 68(10):1861-1866. [11] FRANKLIN O N, JOHANA G M S, GRZEGORZ M. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259. [12] CANTRELL K J, KAPLAN D I,WIETSMA T W. Zero-valent iron for the in situ remediafion of selected metals in groundwater[J]. Journal of Hazardous Materials, 1995, 42(2):201-212. [13] SHARMA Y C, SRIVASTAVA V, WENG C H, et al. Removal of Cr(Ⅵ) from wastewater by adsorption on iron nanoparticles[J]. The Canadian Journal of Chemical Engineering, 2009, 87(6):921-929. [14] GRIEGER K D, FJORDBOGE A, HARTMANN N B, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation:Risk mitigation or trade-off?[J].Journal of Contaminant Hydrology, 2010, 118:165-183. [15] LIU Y Y, MOU H Y, CHEN L Q, et al. Cr(Ⅵ)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material:Environmental factors and effectiveness[J]. Journal of Hazardous Materials, 2015, 298:83-90. [16] LI Z, JONES H K, BOWMAN R S, Helferich R. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science and Technology, 1999, 33(23):4326-4330. [17] LV G C, LI Z H, JIANG W, et al. Removal of Cr(Ⅵ) from water using Fe(Ⅱ)-modified naturalzeolite[J]. Chemical Engineering Research and Design, 2014, 92:384-390. [18] DU G X, LI Z H, LI B L, et al. Cr(Ⅵ) retention and transport through Fe(Ⅲ)-coated natural zeolite[J]. Journal of Hazardous Materials, 2012, 221-222:118-123. [19] CAMPOS V, MORAIS L C, BUCHLER P M. Removal of chromate from aqueous solution using treated natural zeolite[J]. Environmental Geology, 2006, 52(8):1521-1525. [20] BOWMAN R S, HAGGERTY G M, HUDDLESTON R G, et al. Surfactant-enhanced subsurface remediation[M]. ACS Symposium Series 594. American Chemical Society, Washington, DC, 1995:54-64 [21] SCHNEIDER R M, CAVALIN C F, BARROS M A S D, et al. Adsorption of chromium ions in activated carbon[J]. Chemical Engineering Journal, 2007, 132(1):355-362. [22] DEMIRAL H, DEMIRAL I,TÜMSEK F, et al. Adsorption of chromium(Ⅵ) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models[J]. Chemical Engineering Journal, 2008, 144(2):188-196. [23] DAOUD W, EBADI T, FAHIMIFAR A. Optimization of hexavalent chromium removal from aqueous solution using acid-modified granular activated carbon as adsorbent through response surface methodology[J]. Korean Journal of Chemical Engineering, 2015, 32(6):1119-1128. [24] CHOI H D, JUNG W S, CHO J M, et al. Adsorption of Cr(Ⅵ) onto cationic surfactant-modified activated carbon[J]. Journal of Hazardous Materials, 2009, 166(2/3):642-646. [25] LIU W F, ZHANG J, ZHANG C L, et al. Adsorptive removal of Cr (Ⅵ) by Fe-modified activated carbon prepared from Trapa natans husk[J]. Chemical Engineering Journal, 2010, 162(2):677-684. [26] LEE J Y, MOON C H, KIM J H, et al. Feasibility study of the bio-barrier with biologically-active tire rubbers for treating chlorinated hydrocarbons[J]. Journal of Geosciences. 2007, 11(2):131-136. [27] KÖBER R, SCHÄFER D, EBERT M, et al. Coupled in situ reactors using Fe0 and activated carbon for the remediation of complex contaminant mixtures in groundwater//Thornton S F, Oswald S E (Eds.),Proceedings of the Groundwater Quality 2001 Conference. IAHS[C]. Sheffield, UK, 2002:18-21. [28] ZHOU D, LI Y, ZHANG Y B, et al. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates[J]. Journal of Contaminant Hydrology, 2014, 168:1-16. [29] MACKENZIE P D, HORNEY D P, SIVAVEC T M. Mineral precipitation and porosity losses in granular iron columns[J]. Journal of Hazardous Materials, 1999, 68(1/2):1-17. [30] KAMOLPORNWIJIT W, LIANG L, WEST O R, et al. Preferential flow path development and its influence on long-term PRB performance:Column study[J]. Journal of Contaminant Hydrology, 2003, 66(3/4):161-178. [31] 刘菲, 陈亮, 王广才, 等. 地下水渗透反应格栅技术发展综述[J].地球科学进展, 2015, 30(8):863-877. LIU F, CHENG L, WANG G C. Permeable reactive barrier for groundwater pollution remediation:An review[J]. Advance in Earth Science, 2015, 30(8):863-877(in Chinese).
[32] U.S. EPA. Field applications of in situ remediation technologies:Permeable reactive barriers[M]. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, 2002. [33] HANNESIN S F, GILLHAM R W. Long-term performance of an in situ "Iron Wall" for remediation of VOCs[J]. Ground Water, 1998, 36(1):164-170. [34] STEVEN Y, KIRK C, BRUCH S, et al. Multicomponent reactive transport in an in situ zero-valent iron cell[J].Environmental Science and Technology, 2001, 35(7):1493-1503. [35] MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science and Technology, 2003, 37(10):2302-2309. [36] [37] HOU G H, LIU F, LIU M Z, et al. Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater[J]. Water Science and Technology, 2014, 14(4):585-592. [38] MORKIN M, DEVLIN J, BARKER J, et al. In situ sequential treatment of a mixed contaminant plume[J]. Journal of Contaminant Hydrology, 2000, 45(3/4):283-302. [39] BORDEN R C. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier[J]. Journal of Contaminant Hydrology, 2007, 94(1/2):13-33. [40] WANNER C, ZINK S, EGGENBERGER U, et al. Assessing the Cr(Ⅵ) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling[J]. Journal of Contaminant Hydrology, 2012, 131(1):54-63. [41] FLURY I,FROMMER J, EGGENBERGER U, et al. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier[J]. Environmental Science and Technology, 2009, 43(17):6786-6792. [42] COURCELLES B, MODARESSI F A,GOUVENOT D, et al. Influence of precipitates on hydraulic performance of permeable reactive barrier filters[J]. International Journal of Geomechanics, 2011, 11(2):142-151. [43] POWELL R M, PULS R W. Coupled iron corrosion and chromate reduction:Mechanisms for subsurface remediation[J]. Environmental Science and Technology, 1995, 29(8):1913-1922. [44] PRATT A R, BLOWES D W. Products of chromate reduction on proposed subsurface remediation material[J].Environmental Science and Technology, 1997, 31(9):2492-2498. [45] ROH Y, LEE S Y, ELLESS M P. Characterization of corrosion products in the permeable reactive barriers[J]. Environmental Geology, 2000, 40(1/2):184-194. [46] WILKINA R T, ACREEA S D, ROSSA R R, et al. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate, trichloroethylene in groundwater[J]. Science of the Total Environment, 2014, 468-469:186-194. [47] WEBER A, RUHL A S,AMOS R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151:68-82. [48] CARLOS E B,VIOLETA L L, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2012, 223-224:1-12. [49] KASSEM T S. Kinetics and thermodynamic treatments of the reduction of hexavalent to trivalent chromium in presence of organic sulphide compounds[J]. Desalination, 2010,258(1/3):206-218. [50] GOULD J P. The kinetics of hexavalent chromium reduction by metallic iron[J]. Water Research, 1982, 16(6):871-877. [51] 黄园英, 刘菲, 鲁雅梅. 零价铁去除Cr(Ⅵ)的批实验研究[J].岩石矿物学杂志, 2003, 22(4):349-351. HUANG Y Y, LIU F, LU Y M. Batch experiments on the removal of chromium (Ⅵ) by zero valent iron[J]. Acta Petrologica Et Mineralogica, 2003, 22(4):349-351(in Chinese).
[52] LI Y C. Chromate reduction in wastewater at different pH levels using thin iron wires-A laboratory study[J]. Environmental Progress, 2005, 24(3):305-316. [53] 李雅, 张增强, 唐次来, 等. Fe0去除地下水中六价铬的研究[J]. 中国农业大学学报, 2011, 16(2):160-164. LI Y, ZHANG Z Q, TANG C L, et al. Simulation on reduction of hexavalent chromium from groundwater using zerovalent iron[J]. Journal of China Agricultural University, 2011, 16(2):160-164(in Chinese).
[54] WILKINA R T, SU C M, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier[J]. Environmental Science and Technology, 2005, 39(12):4599-4605. [55] 邓红卫, 贺威, 胡建华, 等. Fe-0-PRB修复地下水硝酸盐污染数值模拟[J].中国环境科学, 2015, 35(8):2375-2381. DENG H W, HE W, HU J H, et al. Numerical simulation of Fe0-PRB in rehabilitating groundwater contaminated by nitrate[J]. China Environmental Science, 2015, 35(8):2375-2381(in Chinese).
[56] 谭勇, 梁婕, 曾光明, 等. 基于数值模拟和响应面法的PRB设计影响研究[J]. 环境工程学报, 2016, 10(2):655-661. TAN Y, LIANG J, ZENG G M. Effects of PRB design based on numerical simulation and response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):655-661(in Chinese).
[57] CARNIATOA L, SCHOUPSA G, GIESENA N V D, et al. Highly parameterized inversion of groundwater reactive transport for a complex field site[J]. Journal of Contaminant Hydrology, 2015:38-58. [58] LI L, BENSON C H, LAWSON E M. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2006, 83(1/2):89-121. [59] MAYER U K, FRIND E O, BLOWES D W. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater[J]. Water Resources Research, 2001, 37(12):3091-3103. [60] PATHIRAGE U, INDRARATNA B. Assessment of optimum width and longevity of a permeable reactive barrier installed in an acid sulfate soil terrain[J]. Canadian Geotechnical Journal, 2015, 52(7):999-1004. [61] LI L,BENSON C H. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers[J]. Journal of Hazardous Materials, 2010, 181(1/3):170-180. [62] LU X, LI M, DENG H, et al. Application of electrochemical depassivation in PRB systems to recovery Fe0reactivity[J]. Frontiers of Environmental Science & Engineering, 2016,10(4):1-9. [63] DAOUDA W, EBADIA T, FAHIMIFARA A. Regeneration of acid-modified activated carbon used for removal of toxic metal hexavalent chromium from aqueous solution by electro kinetic process[J]. Desalination and Water Treatment, 2016, 57(15):7009-7020. [64] 孟凡生, 王业耀, 汪春香, 等. 铬污染地下水的PRB修复试验[J].工业用水与废水, 2005, 36(2):22-25. MENG F S, WANG Y Y, WANG C X. A PRB remediation test of Cr-polluted groundwater[J]. Industrial Water & Wastewater, 2005, 36(2):22-25(in Chinese).
-

计量
- 文章访问数: 1910
- HTML全文浏览数: 1835
- PDF下载数: 752
- 施引文献: 0