渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命

李志红, 王广才, 史浙明, 刘菲, 康飞, 徐芳斐, 黄丹丹. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
引用本文: 李志红, 王广才, 史浙明, 刘菲, 康飞, 徐芳斐, 黄丹丹. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
LI Zhihong, WANG Guangcai, SHI Zheming, LIU Fei, KANG Fei, XU Fangfei, HUANG Dandan. Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system[J]. Environmental Chemistry, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
Citation: LI Zhihong, WANG Guangcai, SHI Zheming, LIU Fei, KANG Fei, XU Fangfei, HUANG Dandan. Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system[J]. Environmental Chemistry, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201

渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命

  • 基金项目:

    中国地质调查局地质调查项目(121201012000150009)资助.

Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system

  • Fund Project: Supported by Geological Survey Project of China Geological Survey (121201012000150009).
  • 摘要: 渗透反应格栅(PRB)相对于传统的抽出处理技术是一种新兴的原位处理技术,在大多数情况下,它的运行不依靠外部力量或能源的输入,而是应用原位的地下水流来带动污染物与反应材料接触,最终将污染物去除.本文以地下水中六价铬(Cr(Ⅵ))去除为例,总结了PRB材料筛选过程;介绍了部分PRB场地应用实例,包括不同材料、结构类型、尺寸和PRB处理目标污染物的效果,及以零价铁(Fe0)为填充介质的PRB寿命研究现状.Fe0是实际场地PRB和实验室PRB材料研究中应用最广的材料.维持渗透反应墙的活性和渗透性能,是PRB能长期有效运行的重要条件.详细了解反应墙对污染物的去除机理,对于评价PRB的长期运行效果至关重要.
  • 加载中
  • [1] STARR R C, CHERRY J A. In situ remediation of contaminated ground water:The funnel-and-gate system[J]. Ground Water, 1994, 32(3):465-476.
    [2] 胡莺. 地下水污染修复技术研究进展——零价铁PRB技术的应用与实践[J].云南地理环境研究, 2007, 19(1):11-15.

    HU Y. Research on groundwater remediation-application and practice of Fe0-PRB[J]. Yunnan Geographic Environment Research, 2007, 19(1):11-15(in Chinese).

    [3] ITRC. Permeable reactive barriers:lessons learned/new directions[M]. Interstate Technology & Regulatory Council, 2005:2-3.
    [4] PHILLIPS D H. Permeable reactive barriers:A sustainable technology for cleaning contaminated groundwater in developing countries[J]. Desalination, 2009, 248(1/3):352-359.
    [5] U.S. EPA. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water:Volume 1 design and installation[M]. U.S. Environmental Protection Agency, Office of Research and Development Washington DC, 1999.
    [6] GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2):41-71.
    [7] 陆泗进,王红旗. 地下水污染修复的可渗透性反应墙技术[J]. 上海环境科学, 2005, 24(6):231-236.

    LU S J, Wang H Q. Permeable reactive barrier technology for remedy of contaminated groundwater[J]. Shanghai Environmental Science, 2005, 24(6):231-236(in Chinese).

    [8] BLOWES D W, PTACEK C J, BENNER S G, et al. Treatment of dissolved metals using permeable reactive barriers[J]. Groundwater Quality:Remediation and Protection, 1998, 250:483-490.
    [9] BLOWES D W, PTACEK C J. In-situ remediation of Cr(Ⅵ)-contaminated groundwater using permeable reactive walls:Laboratory studies[J]. Environmental Science and Technology, 1997, 31(12):3348-3357.
    [10] LI Z H, JONES H K, ZHANG P F, et al. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets[J]. Chemosphere. 2007, 68(10):1861-1866.
    [11] FRANKLIN O N, JOHANA G M S, GRZEGORZ M. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259.
    [12] CANTRELL K J, KAPLAN D I,WIETSMA T W. Zero-valent iron for the in situ remediafion of selected metals in groundwater[J]. Journal of Hazardous Materials, 1995, 42(2):201-212.
    [13] SHARMA Y C, SRIVASTAVA V, WENG C H, et al. Removal of Cr(Ⅵ) from wastewater by adsorption on iron nanoparticles[J]. The Canadian Journal of Chemical Engineering, 2009, 87(6):921-929.
    [14] GRIEGER K D, FJORDBOGE A, HARTMANN N B, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation:Risk mitigation or trade-off?[J].Journal of Contaminant Hydrology, 2010, 118:165-183.
    [15] LIU Y Y, MOU H Y, CHEN L Q, et al. Cr(Ⅵ)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material:Environmental factors and effectiveness[J]. Journal of Hazardous Materials, 2015, 298:83-90.
    [16] LI Z, JONES H K, BOWMAN R S, Helferich R. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science and Technology, 1999, 33(23):4326-4330.
    [17] LV G C, LI Z H, JIANG W, et al. Removal of Cr(Ⅵ) from water using Fe(Ⅱ)-modified naturalzeolite[J]. Chemical Engineering Research and Design, 2014, 92:384-390.
    [18] DU G X, LI Z H, LI B L, et al. Cr(Ⅵ) retention and transport through Fe(Ⅲ)-coated natural zeolite[J]. Journal of Hazardous Materials, 2012, 221-222:118-123.
    [19] CAMPOS V, MORAIS L C, BUCHLER P M. Removal of chromate from aqueous solution using treated natural zeolite[J]. Environmental Geology, 2006, 52(8):1521-1525.
    [20] BOWMAN R S, HAGGERTY G M, HUDDLESTON R G, et al. Surfactant-enhanced subsurface remediation[M]. ACS Symposium Series 594. American Chemical Society, Washington, DC, 1995:54-64
    [21] SCHNEIDER R M, CAVALIN C F, BARROS M A S D, et al. Adsorption of chromium ions in activated carbon[J]. Chemical Engineering Journal, 2007, 132(1):355-362.
    [22] DEMIRAL H, DEMIRAL I,TÜMSEK F, et al. Adsorption of chromium(Ⅵ) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models[J]. Chemical Engineering Journal, 2008, 144(2):188-196.
    [23] DAOUD W, EBADI T, FAHIMIFAR A. Optimization of hexavalent chromium removal from aqueous solution using acid-modified granular activated carbon as adsorbent through response surface methodology[J]. Korean Journal of Chemical Engineering, 2015, 32(6):1119-1128.
    [24] CHOI H D, JUNG W S, CHO J M, et al. Adsorption of Cr(Ⅵ) onto cationic surfactant-modified activated carbon[J]. Journal of Hazardous Materials, 2009, 166(2/3):642-646.
    [25] LIU W F, ZHANG J, ZHANG C L, et al. Adsorptive removal of Cr (Ⅵ) by Fe-modified activated carbon prepared from Trapa natans husk[J]. Chemical Engineering Journal, 2010, 162(2):677-684.
    [26] LEE J Y, MOON C H, KIM J H, et al. Feasibility study of the bio-barrier with biologically-active tire rubbers for treating chlorinated hydrocarbons[J]. Journal of Geosciences. 2007, 11(2):131-136.
    [27] KÖBER R, SCHÄFER D, EBERT M, et al. Coupled in situ reactors using Fe0 and activated carbon for the remediation of complex contaminant mixtures in groundwater//Thornton S F, Oswald S E (Eds.),Proceedings of the Groundwater Quality 2001 Conference. IAHS[C]. Sheffield, UK, 2002:18-21.
    [28] ZHOU D, LI Y, ZHANG Y B, et al. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates[J]. Journal of Contaminant Hydrology, 2014, 168:1-16.
    [29] MACKENZIE P D, HORNEY D P, SIVAVEC T M. Mineral precipitation and porosity losses in granular iron columns[J]. Journal of Hazardous Materials, 1999, 68(1/2):1-17.
    [30] KAMOLPORNWIJIT W, LIANG L, WEST O R, et al. Preferential flow path development and its influence on long-term PRB performance:Column study[J]. Journal of Contaminant Hydrology, 2003, 66(3/4):161-178.
    [31] 刘菲, 陈亮, 王广才, 等. 地下水渗透反应格栅技术发展综述[J].地球科学进展, 2015, 30(8):863-877.

    LIU F, CHENG L, WANG G C. Permeable reactive barrier for groundwater pollution remediation:An review[J]. Advance in Earth Science, 2015, 30(8):863-877(in Chinese).

    [32] U.S. EPA. Field applications of in situ remediation technologies:Permeable reactive barriers[M]. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, 2002.
    [33] HANNESIN S F, GILLHAM R W. Long-term performance of an in situ "Iron Wall" for remediation of VOCs[J]. Ground Water, 1998, 36(1):164-170.
    [34] STEVEN Y, KIRK C, BRUCH S, et al. Multicomponent reactive transport in an in situ zero-valent iron cell[J].Environmental Science and Technology, 2001, 35(7):1493-1503.
    [35] MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science and Technology, 2003, 37(10):2302-2309.
    [36]
    [37] HOU G H, LIU F, LIU M Z, et al. Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater[J]. Water Science and Technology, 2014, 14(4):585-592.
    [38] MORKIN M, DEVLIN J, BARKER J, et al. In situ sequential treatment of a mixed contaminant plume[J]. Journal of Contaminant Hydrology, 2000, 45(3/4):283-302.
    [39] BORDEN R C. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier[J]. Journal of Contaminant Hydrology, 2007, 94(1/2):13-33.
    [40] WANNER C, ZINK S, EGGENBERGER U, et al. Assessing the Cr(Ⅵ) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling[J]. Journal of Contaminant Hydrology, 2012, 131(1):54-63.
    [41] FLURY I,FROMMER J, EGGENBERGER U, et al. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier[J]. Environmental Science and Technology, 2009, 43(17):6786-6792.
    [42] COURCELLES B, MODARESSI F A,GOUVENOT D, et al. Influence of precipitates on hydraulic performance of permeable reactive barrier filters[J]. International Journal of Geomechanics, 2011, 11(2):142-151.
    [43] POWELL R M, PULS R W. Coupled iron corrosion and chromate reduction:Mechanisms for subsurface remediation[J]. Environmental Science and Technology, 1995, 29(8):1913-1922.
    [44] PRATT A R, BLOWES D W. Products of chromate reduction on proposed subsurface remediation material[J].Environmental Science and Technology, 1997, 31(9):2492-2498.
    [45] ROH Y, LEE S Y, ELLESS M P. Characterization of corrosion products in the permeable reactive barriers[J]. Environmental Geology, 2000, 40(1/2):184-194.
    [46] WILKINA R T, ACREEA S D, ROSSA R R, et al. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate, trichloroethylene in groundwater[J]. Science of the Total Environment, 2014, 468-469:186-194.
    [47] WEBER A, RUHL A S,AMOS R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151:68-82.
    [48] CARLOS E B,VIOLETA L L, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2012, 223-224:1-12.
    [49] KASSEM T S. Kinetics and thermodynamic treatments of the reduction of hexavalent to trivalent chromium in presence of organic sulphide compounds[J]. Desalination, 2010,258(1/3):206-218.
    [50] GOULD J P. The kinetics of hexavalent chromium reduction by metallic iron[J]. Water Research, 1982, 16(6):871-877.
    [51] 黄园英, 刘菲, 鲁雅梅. 零价铁去除Cr(Ⅵ)的批实验研究[J].岩石矿物学杂志, 2003, 22(4):349-351.

    HUANG Y Y, LIU F, LU Y M. Batch experiments on the removal of chromium (Ⅵ) by zero valent iron[J]. Acta Petrologica Et Mineralogica, 2003, 22(4):349-351(in Chinese).

    [52] LI Y C. Chromate reduction in wastewater at different pH levels using thin iron wires-A laboratory study[J]. Environmental Progress, 2005, 24(3):305-316.
    [53] 李雅, 张增强, 唐次来, 等. Fe0去除地下水中六价铬的研究[J]. 中国农业大学学报, 2011, 16(2):160-164.

    LI Y, ZHANG Z Q, TANG C L, et al. Simulation on reduction of hexavalent chromium from groundwater using zerovalent iron[J]. Journal of China Agricultural University, 2011, 16(2):160-164(in Chinese).

    [54] WILKINA R T, SU C M, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier[J]. Environmental Science and Technology, 2005, 39(12):4599-4605.
    [55] 邓红卫, 贺威, 胡建华, 等. Fe-0-PRB修复地下水硝酸盐污染数值模拟[J].中国环境科学, 2015, 35(8):2375-2381.

    DENG H W, HE W, HU J H, et al. Numerical simulation of Fe0-PRB in rehabilitating groundwater contaminated by nitrate[J]. China Environmental Science, 2015, 35(8):2375-2381(in Chinese).

    [56] 谭勇, 梁婕, 曾光明, 等. 基于数值模拟和响应面法的PRB设计影响研究[J]. 环境工程学报, 2016, 10(2):655-661.

    TAN Y, LIANG J, ZENG G M. Effects of PRB design based on numerical simulation and response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):655-661(in Chinese).

    [57] CARNIATOA L, SCHOUPSA G, GIESENA N V D, et al. Highly parameterized inversion of groundwater reactive transport for a complex field site[J]. Journal of Contaminant Hydrology, 2015:38-58.
    [58] LI L, BENSON C H, LAWSON E M. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2006, 83(1/2):89-121.
    [59] MAYER U K, FRIND E O, BLOWES D W. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater[J]. Water Resources Research, 2001, 37(12):3091-3103.
    [60] PATHIRAGE U, INDRARATNA B. Assessment of optimum width and longevity of a permeable reactive barrier installed in an acid sulfate soil terrain[J]. Canadian Geotechnical Journal, 2015, 52(7):999-1004.
    [61] LI L,BENSON C H. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers[J]. Journal of Hazardous Materials, 2010, 181(1/3):170-180.
    [62] LU X, LI M, DENG H, et al. Application of electrochemical depassivation in PRB systems to recovery Fe0reactivity[J]. Frontiers of Environmental Science & Engineering, 2016,10(4):1-9.
    [63] DAOUDA W, EBADIA T, FAHIMIFARA A. Regeneration of acid-modified activated carbon used for removal of toxic metal hexavalent chromium from aqueous solution by electro kinetic process[J]. Desalination and Water Treatment, 2016, 57(15):7009-7020.
    [64] 孟凡生, 王业耀, 汪春香, 等. 铬污染地下水的PRB修复试验[J].工业用水与废水, 2005, 36(2):22-25.

    MENG F S, WANG Y Y, WANG C X. A PRB remediation test of Cr-polluted groundwater[J]. Industrial Water & Wastewater, 2005, 36(2):22-25(in Chinese).

  • 加载中
计量
  • 文章访问数:  1910
  • HTML全文浏览数:  1835
  • PDF下载数:  752
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-08-22
  • 刊出日期:  2017-02-15
李志红, 王广才, 史浙明, 刘菲, 康飞, 徐芳斐, 黄丹丹. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
引用本文: 李志红, 王广才, 史浙明, 刘菲, 康飞, 徐芳斐, 黄丹丹. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
LI Zhihong, WANG Guangcai, SHI Zheming, LIU Fei, KANG Fei, XU Fangfei, HUANG Dandan. Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system[J]. Environmental Chemistry, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
Citation: LI Zhihong, WANG Guangcai, SHI Zheming, LIU Fei, KANG Fei, XU Fangfei, HUANG Dandan. Review of permeable reactive barrier technology: The experimental study of filling materials, the example of remediation technology, and the longevity of the system[J]. Environmental Chemistry, 2017, 36(2): 316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201

渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命

  • 1.  中国地质大学(北京)水资源与环境学院, 北京, 100083;
  • 2.  生物地质与环境地质国家重点实验室, 中国地质大学(北京), 北京, 100083;
  • 3.  地下水循环与环境演化教育部重点实验室, 中国地质大学(北京), 北京, 100083
基金项目:

中国地质调查局地质调查项目(121201012000150009)资助.

摘要: 渗透反应格栅(PRB)相对于传统的抽出处理技术是一种新兴的原位处理技术,在大多数情况下,它的运行不依靠外部力量或能源的输入,而是应用原位的地下水流来带动污染物与反应材料接触,最终将污染物去除.本文以地下水中六价铬(Cr(Ⅵ))去除为例,总结了PRB材料筛选过程;介绍了部分PRB场地应用实例,包括不同材料、结构类型、尺寸和PRB处理目标污染物的效果,及以零价铁(Fe0)为填充介质的PRB寿命研究现状.Fe0是实际场地PRB和实验室PRB材料研究中应用最广的材料.维持渗透反应墙的活性和渗透性能,是PRB能长期有效运行的重要条件.详细了解反应墙对污染物的去除机理,对于评价PRB的长期运行效果至关重要.

English Abstract

参考文献 (64)

返回顶部

目录

/

返回文章
返回