浮石负载纳米零价铁去除水相中的砷(Ⅴ)

杨艺琳, 周孜迈, 邓文娜, 孙艳秋, 王悦, 柳听义, 王中良. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
引用本文: 杨艺琳, 周孜迈, 邓文娜, 孙艳秋, 王悦, 柳听义, 王中良. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
YANG Yilin, ZHOU Zimai, DENG Wenna, SUN Yanqiu, WANG Yue, LIU Tingyi, WANG Zhongliang. Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
Citation: YANG Yilin, ZHOU Zimai, DENG Wenna, SUN Yanqiu, WANG Yue, LIU Tingyi, WANG Zhongliang. Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301

浮石负载纳米零价铁去除水相中的砷(Ⅴ)

  • 基金项目:

    国家自然科学基金(21307090),天津市高等学校创新团队建设计划(TD12-5037)和天津市科委应用基础与前沿技术研究计划重点项目(14JCZDJC41000)资助.

Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice

  • Fund Project: Supported by the National Natural Science Foundation of China (21307090), the Innovation Team Training Plan of the Tianjin Education Committee (TD12-5037), and Tianjin Municipal Natural Science Foundation of China (14JCZDJC41000).
  • 摘要: 废水中的砷是最具毒性的环境污染物之一.为了更好地利用纳米零价铁(Nanoscale Zero-Valent Iron,NZVI)修复水体污染,本文进行了浮石负载NZVI去除水相中As(V)的研究.利用环境扫描电镜(SEM)和透射电子显微镜(TEM)对浮石负载纳米零价铁(P-NZVI)的形态和粒度进行表征分析,根据批试验和间歇试验探究反应条件对去除效果的影响,并通过对照P-NZVI与As(V)溶液反应前后的样品的X射线光电子能谱(XPS),结合XPS Fe2p和XPS As3d窄轨道图谱,探讨P-NZVI对水相中As(V)的去除机理.研究结果表明,制备所得NZVI颗粒平均粒径30.6 nm,分散在浮石表面.利用BET-N2法检测得到P-NZVI的比表面积为32.2 m2·g-1(NZVI含量0.28 g,质量比7.7%).P-NZVI对As(V)的去除率随初始pH值、反应温度、As(V)初始质量浓度的升高而降低,反应符合准一级和准二级动力学方程.初始As(V)浓度为100 mg·L-1时,P-NZVI的平衡时吸附量为35.7 mg·g-1.P-NZVI对As(V)的去除机理包括吸附、沉淀和共沉淀作用.
  • 加载中
  • [1] 苑宝玲,李坤林,邢核,等.饮用水砷污染治理研究进展[J].环境保护科学,2006,32(1):17-19.

    YUAN B L, LI K L, XING H, et al. Review of removal of arsenic contaminations from drinking water[J].Environmental Protection Science, 2006,32(1):17-19(in Chinese).

    [2] ITZIAR A, JAVIER H A, CARLOS G. Plants against the global epidemic of arsenic poisoning[J].Environment International, 2004, 30(7):949-951.
    [3] XIA Y, LIU J. An overview on chronic arsenic via drinking water in China[J]. Toxicology, 2004, 198(1-3):25-29.
    [4] SUN G. Arsenic contamination and arsenicsis in China[J].Toxicology Applied Pharmacology,2004,198(3):268-271.
    [5] PONDER S M, DRAB J G, MALLOUK T E. Remediation of Cr(VI)and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J].Environmental Science & Technology, 2000, 34(12):2564-2569.
    [6] LEWIS R D, CONDOOR S, BATEK J, et al. Removal of lead contaminated dusts from hard surfaces[J].Environmental Science & Technology, 2006, 40(2):590-594.
    [7] KANEL S R, GRENECHE J M, CHOI. Arsenic (V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material[J].Environmental Science & Technology,2006,40(6):2045-2050.
    [8] LIU Q, BEI Y, ZHOU F. Removal of Pb(Ⅱ) from aqueous solution with amino-functionalized nanoscale zero-valent iron[J].Central European Journal of Chemistry, 2009, 7(1):79-82.
    [9] CAO J, ZHANG W X. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles[J].Journal of Hazardous Materials, 2006, 132(2):213-219.
    [10] 张玉荣,吴杰,朱慧杰,等.纳米铁负载材料应用研究[J].河南城建学院学报,2012,21(1):35-39.

    ZHANG Y R, WU J, ZHU H J, et al. Research on Nano iron immobilization.[J]. Journal of Henan University of Urban Construction, 2012, 21(1):35-39(in Chinese).

    [11] 柳听义,赵林,谭欣,等. 纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究[J].环境化学,2010,29(3):429-433.

    LIU T Y, ZHAO L, TAN X, et al. Batch removal efficiency of Cr(Ⅵ) from landfill leachates by nano zero-valent iron and its mechanism[J].Environmental Chemistry, 2010, 29(3):429-433(in Chinese).

    [12] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury (Ⅱ) and chromium (VI) from wastewater using a new and effective composite:Pumice-supported nanoscale zero-valent iron[J].Chemical Engineering Journal, 2014, 245(1):34-40.
    [13] WESLEY L D. Determination of specific gravity and void ratio of pumice materials[J].ASTM geotechnical testing journal, 2001, 24(4):418-422.
    [14] KITIS M,KAPLAN S.S,KARAKAYA E, et al. Adsorption of natural organic matter from waters by iron coated pumice[J]. Chemosphere, 2007(66):130-138.
    [15] BALAGUER M D, VICENT M T,PARIS J M. A comparison of different support materials in anaerobic fluidized bed reactors for the treatment of vinasse[J].Environmental Science & Technology, 1997, 36(18):539-544.
    [16] LI Z,KIRK H J, ZHANG P, et al. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets[J].Chemosphere, 2003, 68(12):1861-1866.
    [17] SHI L N, ZHANG X, CHEN Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J].Water Research, 2011, 45:886-892.
    [18] LIU T Y, YANG X, WANG Z L, et al. Enhanced chitosan beads-supported Fe0-nanoparticles for removal of metals from electroplating wastewater in permeable reactive barriers[J].Water Research, 2013, 47(17):6691-6700.
    [19] AKBAL F O, AKDEMIR N,OMAR A N. FT-IR spectroscopic detection of pesticide after sorption onto modified pumice[J]. Talanta, 2000, 53:131-135.
    [20] YAVUZ M, GODE F, PEHLIVAN E, et al. An economic removal of Cu2+ and Cr3+ on the new adsorbents:Pumice and polyacrylonitrile/pumice composite[J].Chemical Engineering Science, 2008, 137:453-461.
    [21] ZHANG X, LIN S,CHEN Z, et al. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution:Reactivity, characterization and mechanism[J].Water Research, 2011, 45:3481-3488.
    [22] SHI L N, ZHANG Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.[J]Water Research, 2011, 45:886-892.
    [23] CHUANG F W, LARSON R A, WESSMAN M S. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls[J]. Environmental Science & Technology, 1995, 29(9):2460-2463.
    [24] WU D L,SHEN Y H,DING A Q, et al. Phosphate removal from aqueous solutions by nanoscale zero-valent iron.[J]Environmental Science & Technology,2013,34(18):2663-2669.
    [25] KIM Y H,KIM C M,CHOI I H, et al. Arsenic removal using mesoporous alumina prepared via a templating method[J].Environmental Science & Technology, 2004, 38(3):924-931.
    [26] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J].Journal of Hazardous Materials, 2009, 172(2-3):1591-1596.
    [27] LUO X B,WANG C C,LUO S L, et al. Adsorption of As(Ⅲ) and As(Ⅴ) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nano-composites[J].Chemical Engineering Journal, 2012, 187:45-52.
    [28] 赵振国.吸附作用应用原理[M].北京:化学工业出版社, 2005. ZHAO Z G. Application of the Principle of Adsorption[M].Beijing:Chemical Industry Press, 2005(in Chinese).
    [29] ALOWITZ M J, SCHERER M M. Kinetics of nitrate, nitrite, and Cr(Ⅵ) reduction by iron metal[J].Environmental Science & Technology, 2002, 36(3):299-306.
    [30] HO Y.S. Second-order kinetic modal for the absorption of cadmium onto tree fern:a comparison of linear and nonlinear methods[J].Water Research,2006,40(1):119-125.
    [31] LIU T Y, WANG Z L, SUN Y. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from waster[J].Chemical Engineering Journal, 2015, 263:55-61.
    [32] LI Z, JONES Z L, ZHANG P P, et al. Chromate transport through columns packed with surfacant-modified zeolite/zero-velant iron[J].Chemosphere, 2007, 68:55-61.
    [33] SU C, PULS R W. Arsenate and arsenite removal by zero-valent iron:Kinetics, red ox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(1):1487-1492.
    [34] CHATTERJEE S, LEE D S, LEE M W, et al. Nitrate removal from aqueous solutions by cross linked chitosan beads conditioned with sodium bisulfate[J].Journal of Hazardous Materials, 2009, 166(1):508-513.
    [35] BODDU V M, ABBURI K, TALBOTT J L, et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent[J].Environmental Science & Technology, 2003, 37(19):4449-4456.
    [36] LIEN H L, ZHANG W X. Nanoscale iron particles for compete reduction of chlorinated ethane.[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 191(1):97-105.
    [37] LIU T, RAO P, MAK M S, et al. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate[J].Water Research, 2009, 43(9):2540-2548.
    [38] MONDAL P, MAJUMDER C B, MOHANTY B. Effects of adsorbent dose its particle size and initial arsenic concentration on the removal of arsenic iron and manganese from simulated ground water by Fe3+ impregnated activated carbon[J].Journal of Hazardous Materials, 2008, 150:695-702.
    [39] PONDER S M, DARAB J G,MALLOUK T E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, Nanoscale zero-valent iron[J].Environmental Science & Technology, 2000, 34(12):2564-2569.
  • 加载中
计量
  • 文章访问数:  866
  • HTML全文浏览数:  788
  • PDF下载数:  464
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-05-13
  • 刊出日期:  2017-03-15
杨艺琳, 周孜迈, 邓文娜, 孙艳秋, 王悦, 柳听义, 王中良. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
引用本文: 杨艺琳, 周孜迈, 邓文娜, 孙艳秋, 王悦, 柳听义, 王中良. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
YANG Yilin, ZHOU Zimai, DENG Wenna, SUN Yanqiu, WANG Yue, LIU Tingyi, WANG Zhongliang. Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
Citation: YANG Yilin, ZHOU Zimai, DENG Wenna, SUN Yanqiu, WANG Yue, LIU Tingyi, WANG Zhongliang. Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301

浮石负载纳米零价铁去除水相中的砷(Ⅴ)

  • 1.  天津师范大学, 天津市水资源与水环境重点实验室, 天津, 300387;
  • 2.  天津师范大学, 城市与环境科学学院, 天津, 300387
基金项目:

国家自然科学基金(21307090),天津市高等学校创新团队建设计划(TD12-5037)和天津市科委应用基础与前沿技术研究计划重点项目(14JCZDJC41000)资助.

摘要: 废水中的砷是最具毒性的环境污染物之一.为了更好地利用纳米零价铁(Nanoscale Zero-Valent Iron,NZVI)修复水体污染,本文进行了浮石负载NZVI去除水相中As(V)的研究.利用环境扫描电镜(SEM)和透射电子显微镜(TEM)对浮石负载纳米零价铁(P-NZVI)的形态和粒度进行表征分析,根据批试验和间歇试验探究反应条件对去除效果的影响,并通过对照P-NZVI与As(V)溶液反应前后的样品的X射线光电子能谱(XPS),结合XPS Fe2p和XPS As3d窄轨道图谱,探讨P-NZVI对水相中As(V)的去除机理.研究结果表明,制备所得NZVI颗粒平均粒径30.6 nm,分散在浮石表面.利用BET-N2法检测得到P-NZVI的比表面积为32.2 m2·g-1(NZVI含量0.28 g,质量比7.7%).P-NZVI对As(V)的去除率随初始pH值、反应温度、As(V)初始质量浓度的升高而降低,反应符合准一级和准二级动力学方程.初始As(V)浓度为100 mg·L-1时,P-NZVI的平衡时吸附量为35.7 mg·g-1.P-NZVI对As(V)的去除机理包括吸附、沉淀和共沉淀作用.

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回