基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子

舒婷婷, 陈俊杰, 付成, 喻艳华. 基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子[J]. 环境化学, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
引用本文: 舒婷婷, 陈俊杰, 付成, 喻艳华. 基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子[J]. 环境化学, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
SHU Tingting, CHEN Junjie, FU Cheng, YU Yanhua. Detection of cyanide ion by ratiometric fluorescent probe based on BODIPY derivative[J]. Environmental Chemistry, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
Citation: SHU Tingting, CHEN Junjie, FU Cheng, YU Yanhua. Detection of cyanide ion by ratiometric fluorescent probe based on BODIPY derivative[J]. Environmental Chemistry, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502

基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子

  • 基金项目:

    江汉大学科研启动基金(06090001)资助.

Detection of cyanide ion by ratiometric fluorescent probe based on BODIPY derivative

  • Fund Project: Supported by the Research Startup Foundation of Jianghan University (06090001).
  • 摘要: 合成了一种可在含水介质中单一性识别CN-的比率型荧光探针BODIPY 1.通过荧光光谱和紫外吸收光谱来研究BODIPY 1检测CN-的能力.结果表明,在四氢呋喃和水(V/V=9/1)的混合溶液中,BODIPY 1的最大吸收波长和荧光最大发射波长分别为515 nm和534 nm(激发波长为515 nm),所测阴离子中,包括CN-、F-、Cl-、Br-、I-、ClO4-、AcO-、NO3-、H2PO4-和HSO4-,仅CN-可与BODIPY 1发生加成反应从而引起其吸收峰蓝移18 nm,并且荧光最大发射波长蓝移20 nm,并伴随着强度降低40%.BODIPY 1检测CN-的检测限可以达到0.98 μmol·L-1,低于世界卫生组织规定饮用水中的CN-的最大含量不能超过1.9 μmol·L-1.将其应用到实际水样,发现和纯水样的响应基本一致,表明BODIPY 1可用于实际水样的检测.
  • 加载中
  • [1] KOCH R, Guidelines for drinking water quality, Volume Ⅰ-recommendations geneva, world health organization, 1982[J], CLEAN-Soil, Air, Water, 1984, 12(2):221-223.
    [2] VENNESLAND B, COMM E E, KNOWNLES C J, et al. Cyanide in biology[M]. London:Academic Press, 1981.
    [3] HHCHIVA H, ITO S, FUSHINUKI Y, et al. Continuous monitoring for cyanide in waste water with a galvanic hydrogen cyanide sensor using a purge system[J].Talanta, 1999, 48(5):997-1004.
    [4] SUZUKI T, HIOKI A, KURAHASHI M, Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions[J]. Analytica Chimica Acta, 2003, 476(1):159-165.
    [5] CHRISTISONA T T, ROHRERA J S. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection[J]. Journal of Chromatography A, 2007, 1155(1):31-39.
    [6] SURLEVA A R, NIKOLOVA V D, NESHKOVA M T, A new generation of cyanide ion-selective membranes for flow injection application:Part Ⅱ. Comparative study of cyanide flow-injection detectors based on thin electroplated silver chalcogenide membranes[J]. Analytica Chimica Acta, 2007, 583(1), 174-181.
    [7] KWON S K, KOU S, KIM H N, et al. Sensing cyanide ion via fluorescent change and its application to the microfluidic system[J].Tetrahedron Letter, 2008, 49(26):4102-4105.
    [8] DONG M, PENG Y, DONG Y M, et al. A Selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1,1'-binaphthyl scaffold[J]. Organic Letters, 2012, 14(1):130-133.
    [9] WANG F, WANG L, CHEN X Q, et al. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions[J].Chemical Society Reviews, 2014, 43(13):4312-4324.
    [10] LI Q, CAI Y, YAO H, et al. A colorimetric and fluorescent cyanide chemosensor based on dicyanovinyl derivatives:Utilization of the mechanism of intramolecular charge transfer blocking[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 136:1047-1051.
    [11] KUMAR A, KIM H S, A pyrenesulfonyl-imidazolium derivative as a selective cyanide ion sensor in aqueous media[J]. New Journal of Chemistry, 2015, 39(4):2935-2942.
    [12] WANG S T, SIE Y W, WAN C F, et al. A reaction-based fluorescent sensor for detection of cyanide in aqueous media[J]. Journal of Luminescence, 2016, 173:25-29.
    [13] ZHANG Q S, ZHANG J, ZUO H J, et al. A novel colorimetric and fluorescent sensor for cyanide anions detection based on triphenylamine and benzothiadiazole[J]. Tetrahedron, 2016, 72(9):1244-1248.
    [14] SHIRAISHI Y, NAKAMURA M, KOGUREA T, et al. Off-on fluorometric detection of cyanide anions in an aqueous mixture by an indane-based receptor[J]. New Journal of Chemistry, 2016, 40:1237-1243.
    [15] BIRADARA A A, BIRADARA A V, SUNA T, et al, Bicinchoninic acid-based colorimetric chemosensor for detection of low concentrations of cyanide[J]. Sensors and Actuators B:Chemical, 2016, 222:112-119.
    [16] REDDY T S, MARAGANI R, MISRA R, Triarylborane substituted naphthalimide as a fluoride and cyanide ion sensor[J]. Dalton Transactions, 2016, 45:2549-2553.
    [17] LI Y R, WANG Q R, ZHOU X M, et al. A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core-shell nanoparticles[J]. Sensors and Actuators B:Chemical, 2016, 228:366-372.
    [18] LI J J, WEI W, QI X L, et al. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 152:288-293.
    [19] YOU G Y, PARK G J, LEE S A, et al. A single chemosensor for multiple target anions:The simultaneous detection of CN- and OAc- in aqueous media[J]. Sensors and Actuators B:Chemical, 2014, 202:645-655.
    [20] KUMARI N, JHA S, BHATTACHARYA S, Colorimetric probes based on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer[J]. Journal of Organic Chemistry, 2011, 76(20):8215-8222.
    [21] YUE Y K, HUO F J, YIN C X, et al. A new "donor-two-acceptor" red emission fluorescent probe for highly selective and sensitive detection of cyanide in living cells[J]. Sensors and Actuators B:Chemical, 2015, 212:451-456.
    [22] JIAO L J, YU C J, WANG M W, et al.β-formyl-BODIPYs from the vilsmeier-haack reaction[J]. Journal of Organic Chemistry, 2009, 74(19):7525-7528.
  • 加载中
计量
  • 文章访问数:  482
  • HTML全文浏览数:  399
  • PDF下载数:  419
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-05
  • 刊出日期:  2017-03-15
舒婷婷, 陈俊杰, 付成, 喻艳华. 基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子[J]. 环境化学, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
引用本文: 舒婷婷, 陈俊杰, 付成, 喻艳华. 基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子[J]. 环境化学, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
SHU Tingting, CHEN Junjie, FU Cheng, YU Yanhua. Detection of cyanide ion by ratiometric fluorescent probe based on BODIPY derivative[J]. Environmental Chemistry, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502
Citation: SHU Tingting, CHEN Junjie, FU Cheng, YU Yanhua. Detection of cyanide ion by ratiometric fluorescent probe based on BODIPY derivative[J]. Environmental Chemistry, 2017, 36(3): 642-649. doi: 10.7524/j.issn.0254-6108.2017.03.2016070502

基于氟硼二吡咯衍生物比率型荧光探针检测氰根离子

  • 1. 江汉大学交叉学科研究院, 武汉, 430056
基金项目:

江汉大学科研启动基金(06090001)资助.

摘要: 合成了一种可在含水介质中单一性识别CN-的比率型荧光探针BODIPY 1.通过荧光光谱和紫外吸收光谱来研究BODIPY 1检测CN-的能力.结果表明,在四氢呋喃和水(V/V=9/1)的混合溶液中,BODIPY 1的最大吸收波长和荧光最大发射波长分别为515 nm和534 nm(激发波长为515 nm),所测阴离子中,包括CN-、F-、Cl-、Br-、I-、ClO4-、AcO-、NO3-、H2PO4-和HSO4-,仅CN-可与BODIPY 1发生加成反应从而引起其吸收峰蓝移18 nm,并且荧光最大发射波长蓝移20 nm,并伴随着强度降低40%.BODIPY 1检测CN-的检测限可以达到0.98 μmol·L-1,低于世界卫生组织规定饮用水中的CN-的最大含量不能超过1.9 μmol·L-1.将其应用到实际水样,发现和纯水样的响应基本一致,表明BODIPY 1可用于实际水样的检测.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回