天然有机质模型化合物在无机矿物表面的吸附
Adsorption mechanisms of natural organic matter model compounds on inorganic minerals
-
摘要: 天然有机质(NOM)在全球碳循环中扮演重要角色,而无机矿物对有机碳稳定具有重要作用.本实验以Fe2O3(纳米和微米颗粒)和高岭土为吸附剂,探讨复杂多组分NOM模型化合物(单宁酸、没食子酸、富马酸钠和油酸钠)在无机矿物表面的吸附稳定机理.结果表明,4种不同性质的模型化合物在矿物表面均呈现明显的非线性吸附.纳米氧化铁较大的比表面积能够提供更多的吸附位点,有利于其对模型化合物的吸附,但是其比表面积的有效性最低,显示其极大的吸附潜力.不管是芳香性还是脂肪性化学物质,大分子模型化合物的吸附显著高于小分子模型化合物,说明NOM的模型化合物中大分子组分更倾向于吸附在无机矿物表面,这一现象提示NOM在无机矿物表面发生选择性吸附时,有可能优先吸附大分子组分.Abstract: Natural organic matters (NOM) play an essential role in global carbon cycles. Their interactions with inorganic minerals are a very important process for carbon stabilization. This study used iron oxide particles (nano and micron ferric oxide) and kaolinite as model adsorbents to investigate the adsorption mechanisms of NOM model compounds with different properties (tannin acid, gallic acid, fumaric acid sodium and sodium oleate) on inorganic minerals. The results showed that the four model compounds exhibited obvious non-linear adsorption on the surface of the minerals. The larger surface area of nano-Fe2O3 may provide more sorption sites, which is beneficial to its adsorption to the model compounds, but the lowest effectiveness of surface area, showing its great potential for adsorption.The sorption of the compounds with high molecular weight was significantly higher than that of the small molecular compounds, indicating their preferential adsorption when the selective adsorption of NOM occurs on inorganic mineral surface.
-
Key words:
- natural organic matter /
- model compounds /
- inorganic mineral /
- adsorption mechanism.
-
[1] KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2):219-236. [2] SAENGER A, C CILLON L, POULENARD J, et al. Surveying the carbon pools of mountain soils:A comparison of physical fractionation and Rock-Eval pyrolysis[J]. Geoderma, 2015, 241:279-288. [3] KEIL R G, MAYER L M. Mineral matrices and organic matter[J]. Nature, 2014,12:337-357. [4] KAHLE M, KLEBER M, JAHN R. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties[J]. Organic Geochemistry, 2004, 35(3):269-276. [5] MIKUTTA R, MIKUTTA C, KALBITZ K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2569-2590. [6] KALBITZ K, SCHWESIG D, RETHEMEYER J, et al. Stabilization of dissolved organic matter by sorption to the mineral soil[J]. Soil Biology and Biochemistry, 2005, 37(7):1319-1331. [7] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388):198-200. [8] BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature, 2003, 426(6964):323-326. [9] 衡利沙, 王代长, 蒋新, 等. 黄棕壤铁铝氧化物与土壤稳定性有机碳和氮的关系[J]. 环境科学, 2010, 31(11):2748-2755. HENG L S, WANG D C, JIANG X, et al. Ralationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils[J]. Environmental Science, 2010, 31(11):2748-2755(in Chinese).
[10] TOURINHO P S, VAN GESTEL C A, LOFTS S, et al. Metal-based nanoparticles in soil:Fate, behavior, and effects on soil invertebrates[J]. Environmental Toxicology And Chemistry, 2012, 31(8):1679-1692. [11] WANG Z, YU X, PAN B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes[J]. Environmental Science & Technology, 2009, 44(3):978-984. [12] LALL A A, RONG W Z, MADLER L, et al. Nanoparticle aggregate volume determination by electrical mobility analysis:Test of idealized aggregate theory using aerosol particle mass analyzer measurements[J]. Journal of Aerosol Science, 2008, 39(5):403-417. [13] PAN B, XING B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. Ⅰ. Several concerns regarding pseudo-first order and pseudo-second order models[J]. Journal of Soils and Sediments, 2010, 10(5):838-844. [14] PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24):9005-9013. [15] 刘茜. 胡敏酸-氧化铁-高岭石复合体的形成与表征[D]. 武汉:华中农业大学, 2009. LIU Q. Interaction between humic acid, iron oxides and kaolinite, and their characteristics[D]. Wuhan:Huazhong Agricultural University, 2009(in Chinese). [16] GU B, SCHMITT J, CHEN Z, et al. Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1):38-46. [17] YANG K, LIN D, XING B. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6):3571-3576. [18] 韩兰芳, 孙可, 康明洁, 等. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11):1811-1820. HAN L F, SUN K, KANG M J, et al. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Enviromental Chemistry, 2014, 33(11):1811-1820(in Chinese).
[19] 吴宏海, 张秋云, 方建章, 等. 高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究[J]. 岩石矿物学杂志, 2003, 22(2):173-176. WU H H, ZHANG Q Y, FANG J Z, et al. A experimental study of the humic acid sorption on kaolinite and Si/Al-oxide minerals[J]. Acta Petrologica et Mineralogica, 2003, 22(2):173-176(in Chinese).
[20] KHALAF M, KOHL S D, KLUMPP E, et al. Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid-state 19F NMR[J]. Environmental Science & Technology, 2003, 37(13):2855-2860. [21] 张梦妍, 包承宇, 陈静文, 等. 化学氧化剂(H2O2, NaOCl)作用下高岭土-胡敏酸复合体中有机碳的稳定性[J]. 环境化学, 2014, 33(7):1149-1154. ZHANG M Y, BAO C Y, CHEN J W, et al. The stabilization of organic carbon in humic acid-kaolin complex by chemical oxidants[J]. Enviromental Chemistry, 2014, 33(7):1149-1154(in Chinese).
[22] 李爱民, 朱燕, 代静玉, 等. 胡敏酸在高岭土上的吸附行为[J]. 岩石矿物学杂志, 2005, 24(2):145-150. LI A M, ZHU Y, DAI J Y, et al. The adsorption behavior of humic acid on kaolin[J]. Acta Petrologica et Mineralogica, 2005, 24(2):145-150(in Chinese).
[23] BALCKE G U, KULIKOVA N A, HESSE S, et al. Adsorption of humic substances onto kaolin clay related to their structural features[J]. Soil Science Society of America Journal, 2002, 66(6):1805-1812.
计量
- 文章访问数: 1232
- HTML全文浏览数: 1155
- PDF下载数: 604
- 施引文献: 0