β-In2S3的水热合成及合成条件对其光催化降解土霉素的影响
Preparation of β-In2S3 by hydrothermal process and influence of synthesis conditions on the photocatalytic degradation of oxytetracycline
-
摘要: 利用水合硝酸铟和硫代乙酰胺为原料,采用温和水热法一步合成了In2S3.以土霉素为目标污染物,考察了反应物物质的量之比、溶剂体积、反应温度、反应时间等合成条件对最终产物光催化性能的影响,以TOC去除率为评价指标,考察光催化反应后土霉素的矿化程度.结果表明,在In与S的物质的量之为5∶12,溶剂水的体积为80 mL,水热反应的温度为120 ℃,水热反应的时间为12 h时可制备出单一立方相的β-In2S3晶体,并在400—600 nm范围内对可见光有很强的吸收;在室外不同太阳光强照射下,当 In2S3投加量为2.00 g·L-1时,在240 min内对30 mg·L-1的土霉素溶液的去除率达到98%以上,TOC去除率达到69.5%.Abstract: β-In2S3 nanomaterials were prepared by reacting In(NO3)3 with thioacetamide through a facile one-step hydrothermal process. The effects of the synthesis conditions such as the molar ratio of reaction precursors, the volume of solvent water, hydrothermal temperature and hydrothermal time on the photocatalytic activity of In2S3 were investigated using oxytetracycline as the target compound,and the TOC removal efficiency was used as the evaluation index to investigate the degree of mineralization of oxytetracycline after photocatalytic reaction. The results indicated that when the molar ratio was In∶S=5∶2, volume of solvent was 80 mL, hydrothermal temperature was 120 ℃ and hydrothermal time was 12 h, a single cubic crystal of β-In2S3 was successfully synthesized, and excellent visible-light response was obtained in the wavelength range 400—600 nm. Meanwhile, the degradation efficiency of oxytetracycline exceeded 98% and TOC removal efficiency reached 69.5%. after 240 min under solar light irradiation in the presence of 2.00 g·L-1 catalyst and 30 mg·L-1 initial concentration of oxytetracycline which indicated that In2S3 had high photocatalytic activity.
-
-
[1] 李兆君,姚志鹏,张杰,等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008, 3(1):15-20. LI Z J, YAO Z P, ZHANG J, et al. A review on fate and ecological toxicity of veterinary antibiotics in soil environments[J]. Asian Journal of Ecotoxicology, 2008, 3(1):15-20(in Chinese).
[2] 周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3): 243-251. ZHOU Q X, LUO Y, WANG M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3): 243-251(in Chinese).
[3] MARTINEZ J L. Environmental pollution by antibiotics and by amtibiotic resistance determinants [J]. Environmental Pollution, 2009, 157(11):2893-2902. [4] ARIKAN O A, MULBRY W, Rice C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J]. Journal of Hazardous Materials, 2009, 164(2/3):483-489. [5] 朱赛嫦,王静,邵卫伟,等. 超高效液相色谱-串联质谱法同时检测地表水中18种药物与个人护理品的残留量[J]. 色谱, 2013, 31(1):15-21. ZHU S C, WANG J, SHAO W W, et al. Simultaneous determination of 18 pharmaceuticals and personal care products in surface water by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2013,31(1):15-21(in Chinese).
[6] 张昱,杨敏,王春艳,等. 生产过程中抗生素与抗药基因的排放特征、环境行为及控制[J]. 环境化学,2015,34(1): 1-8. ZHANG Y, YANG M, WANG C Y, et al. Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer Mechanism, pollution control technology[J]. Environmental Chemistry, 2015, 34(1):1-8(in Chinese).
[7] 葛林科,任红蕾,鲁建江,等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学,2015,34(5): 875-883. GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China[J]. Environmental Chemistry, 2015, 34(5):875-883(in Chinese).
[8] GU C, KARTHIKEYAN K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(8):2660-2667. [9] 魏瑞成, 葛峰, 陈明, 等. 江苏省畜禽养殖场水环境中四环类抗生素污染研究[J]. 农业环境科学学报, 2010, 29(6): 1205-1210. WEI R C, GE F, CHEN M, et al. Pollution of tetracyclines from livestock and poultry farms in aquatic environment in Jiangsu province, China[J]. Journa of Agro-Environment Science, 2010, 29(6): 1205-1210(in Chinese).
[10] 吴楠, 乔敏. 土壤环境中四环素类抗生素残留及抗性基因污染的研究进展[J]. 生态毒理学报, 2010, 5(5): 618-627. WU N, QIAO M. Tetracycline residues and tetracycline resistance gene pollution in soil: A review[J]. Asian Journal of Ecotoxicology, 2010, 5(5): 618-627(in Chinese).
[11] 姜安玺, 李德强, 相会强, 等. 水解酸化-生物接触氧化工艺在抗生素废水处理中的应用[J]. 安全与环境学报, 2002, 2(2): 3-6. JIANG A X, LI D Q, XIANG H Q.Application of hydrolytic acidification abio-contact oxidizing process for liquid-waste disposal[J].Journal of Safety and Environment,2002,2(2):3-6(in Chinese).
[12] BAUTITZ I R, NOGUEIRA R F P. Degradation of tetracycline by photo-fenton process-solar irradiation and matrix effects [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187(1):33-39. [13] 苟世霞,王春荣,于晓华,等. Photo-Fenton高级氧化技术处理土霉素废水的研究[J]. 甘肃科学学报,2013, 25(3): 43-46. GOU S X, WANG C R, YU X H, et al. Degradation of oxytetracycline wastewater using photo-Fenton advanced oxidation technology[J]. Journal of Gansu Sciences, 2013, 25(3): 43-46(in Chinese).
[14] 张岩,高明明,王新华,等.光电Fenton耦合转盘技术处理四环素废水[J]. 环境化学,2016,35(5): 893-900. ZHANG Y, GAO M M, WANG X H, et al. Photo-electro-Fenton degradation of tetracycline based on rotating disk electrode[J]. Environmental Chemistry, 2016, 35(5):893-900(in Chinese).
[15] KHAN M H, BAE H, JUNG J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermadiates and pathway [J]. Journal of Hazardous Materials, 2010, 181(1/3):659-665. [16] ZHAO C, DENG H, LI Y, et al. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation [J]. Journal of Hazardous Materials, 2010, 176(1/3):884-892. [17] PALOMINOS R A, MONDACA M A, GIRALDO A, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J]. Catalysis Today, 2009, 144(1/2):100-105. [18] 叶林静,关卫省,宋优男,等. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学,2013, 30(9):1023-1029. YE L J, GUAN W S, SONG Y N, et al. Synthesis of magnetic Fe3O4/ZnO core-shell materials and its degradability on tetracycline antibiotic[J]. Chinese Journal of Applied Chemistry, 2013, 30(9): 1023-1029(in Chinese).
[19] CAO G X, ZHAO Y B, WU Z S. Synthesis and characterization of In2S3 nanoparticles [J]. Journal of Alloys and Compounds, 2009, 472(1/2):325-327. [20] FU X L, WANG X X, CHEN Z X, et al. Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation [J]. Applied Catalysis B: Environmental, 2010, 95(3/4):393-399. [21] YANG M Q, WENG B, XU Y J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach [J]. Langmuir, 2013, 29(33):10549-10558. [22] CHAI B, PENG T Y, ZENG P, et al. Synthesis of floriated In2S3 decorated with TiO2 nanoparticlea for efficient photocatalytic hydrogen production under visible light [J]. Journal of Materials Chemistry, 2011, 21(38):14587-14593. [23] DALAS E, KOBOTIATIS L. Primary solid-state batteries constructed from copper and indium sulphides [J]. Journal of Materials Science, 1993, 28(24):6595-6597. [24] NOMURA R, INAZAWA S I, KANAYA K, et al. Thermal decomposition of butylindium thiolates and preparation of indium sulfide powders [J]. Applied Organometallic Chemistry, 1989, 3(2):195-197. [25] 艾翠玲,周丹丹,张嵘嵘,等. β-In2S3的制备及其太阳光下降解土霉素[J]. 环境科学,2015, 36(8): 2911-2917. AI C L, ZHOU D D, ZHANG R R, et al. Preparation of β-In2S3 and catalytic degradation of oxytetracycline under solar light irradiation [J]. Environmental Science, 2015, 36(8):2911-2917(in Chinese).
[26] YAHMADI B, KAMOUN N, BENNACEUR R, et al. Structural analysis of indium sulphide thin films elaborated by chemical bath deposition [J]. Thin Solid Films, 2005, 473(2): 201-207. [27] ZHU H, WANG X L, YANG W, et al. Indium sulfide microflowers: Fabrication and optical properties [J]. Materials Research Bulletin, 2009, 44(10): 2033-2039. [28] BILJANA P, IRINA B. Sonochemically synthesized 3D assemblies of close-packed In2S3 quantum dots: Structure, size dependent optical and electrical properties [J]. The Journal of Physical Chemistry C, 2013, 117(14): 7303-7314. [29] KIM Y H, LEE J H, SHIN D W, et al. Synthesis of shape-controlled β-In2S3 nanotubes through oriented attachment of nanoparticles [J]. Chemical Communications, 2010, 46(13): 2292-2294. [30] YAMAGUCHI K, YOSHIDA T, MINOURA H. Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioacetamide [J]. Thin Solid Films, 2003, 431-432(3): 354-358. [31] 徐如人, 庞文琴. 无机合成与制备化学[M]. 北京:高等教育出版社, 2001. XU R R, PANG W Q. Inorganic synthesis and preparative chemistry[M]. Beijing: Higher education Press, 2001(in Chinese). [32] LI Y C, ZHANG Z D,WANG W Z. Self-assembled porous 3D flowerlike β-In2S3 structures: Synthesis, characterization, and optical properties[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4117-4123. [33] MATTHEW A F, RICHARD L B. Solution-phase synthesis of well-defined indium sulfide nanorods[J]. Chemistry of Materials, 2009, 21(9): 1790-1792. [34] [35] LEE J S, CHOI S C. Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process [J]. Journal of the European Ceramic Society, 2005, 25(14): 3307-3314. [36] 王艳, 刘畅, 柏扬, 等. 水热反应釜中高温高压离子水溶液热力学性质[J]. 化工学报, 2006, 57(8): 1856-1864. WANG Y, LIU C, BAI Y, et al. Thermodynamics of alkali aqueous solution in hydrothermal reaction vessel [J]. Journal of Chemical Industry and Engineering, 2006, 57(8): 1856-1864(in Chinese).
[37] 王军. 高压溶剂热调控微纳米晶结构及性能研究[D].山东:山东大学, 2016. WANG J. Control microstructure and properties of nanocrystalline by high pressure solvothermal method[D]. Shandong: Shangdong University, 2016(in Chinese). [38] 李国华, 王大伟, 黄志良. 晶体生长界面相研究[J]. 人工晶体学报, 2001, 30(2): 171-177. LI G H, WANG D W, HUANG Z L. Study on interface-phase of crystal growth[J]. Journal of Synthetic Crystals, 2001, 30(2): 171-177(in Chinese).
[39] ZHAO P T, HUANG T, HUANG K X. Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes[J]. The Journal of Physical Chemistry C, 2007, 111(35): 12890-12897. [40] 杨群保. K2O-Bi2O3-TiO2系各向异性晶粒的水热合成研究[D]. 北京: 中国科学院, 2002. YANG Q B. Investigation on hydrothermally synthesized anisotropic crystallites in K2O-Bi2O5 [41] 倪文, 张大陆, 陈淑祥. 水固比对水热合成硬硅钙石球形团聚体的影响[J]. 新型建筑材料, 2005, (3): 53-55. [42] GORAI S, GUHA P, GANGULI D, et al. Chemical synthesis of β-In2S3 powder and its optical characterization [J]. Materials Chemistry and Physics, 2003, 82(3): 974-979. [43] ZHANG L N, ZHANG W, YANG H B, et al. Growth studies and characterization of In2S3 films prepared by hydrothermal method and their conversion to In2O3 films[J]. Materials Chemistry and Physics, 2011, 130(3): 932-936. [44] YU S, SHU L, QIAN Y, et al. Hydrothermal preparation and characterization of nanocrystalline powder of β-indium sulfide[J]. Materials Research Bulletin, 1998, 33(5): 717-721. [45] DALAS E, SAKKOPOULOS S, VITORATOS E, et al. Aqueous precipitation and electrical properties of In2S3: Characterization of the In2S3/polyaniline and In2S3/polypyrrole heterojunctions[J]. Journal of Materials Science, 1993, 28(20): 5456-5460. [46] LUCENA R, AGUILERA I, PALACIOS P, et al. Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation[J]. Chemistry of Materials, 2008, 20(16): 5125-5127. [47] TSUJI I, KATO H, KUDO A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chemistry of Materials, 2006, 18(7): 1969-1975. [48] 黄丽萍, 陈东辉, 黄满红, 等. TiO2光催化降解水中土霉素的动力学研究[J]. 环境工程学报, 2012,6(1):57-62. HUANG L P, CHEN D H, HUANG M H, et al. Kinetics study on photocatalytic degradation of oxytetracycline(OTC) in water by nano titanium suspended system[J]. Chinese Journal of Environmental Engineering, 2012, 6(1):57-62(in Chinese).
[49] ZHANG G H, GUAN W S, SHEN H, et al. Organic additives-free hydrothermal synthesis and visible-light-driven photodegradation of tetracycline of WO3 nanosheets[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5443-5450. -

计量
- 文章访问数: 1275
- HTML全文浏览数: 1218
- PDF下载数: 384
- 施引文献: 0