菹草对模拟系统外源氮素去除作用的影响

薛艳玲, 迟杰. 菹草对模拟系统外源氮素去除作用的影响[J]. 环境化学, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
引用本文: 薛艳玲, 迟杰. 菹草对模拟系统外源氮素去除作用的影响[J]. 环境化学, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
XUE Yanling, CHI Jie. Effect of Potamogeton crispus L. on the removal of exogenous nitrogen in the simulation system[J]. Environmental Chemistry, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
Citation: XUE Yanling, CHI Jie. Effect of Potamogeton crispus L. on the removal of exogenous nitrogen in the simulation system[J]. Environmental Chemistry, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001

菹草对模拟系统外源氮素去除作用的影响

  • 基金项目:

    海河干流水环境质量改善关键技术与综合示范(2014zx07203-009)资助

Effect of Potamogeton crispus L. on the removal of exogenous nitrogen in the simulation system

  • Fund Project: Supported by the Key Technology and Comprehensive Demonstration of Water Environment Quality Improvement in the Mainstream of Haihe River (2014zx07203-009)
  • 摘要: 通过构建室内模拟系统,研究了外源氮素恒定输入时沉水植物菹草对氮去除作用的影响.结果表明,(1)系统稳定后植物组对进水中总氮、氨氮和硝氮的去除率分别较无植物对照组提高了14.7%、25.0%和21.6%.(2)实验期间沉积物中可转化态氮含量整体呈下降趋势;与此同时,非转化态氮的含量上升,植物组的上升幅度是对照组的1.9倍.这表明菹草能够降低内源沉积物氮的释放风险.(3)整个实验期间生物脱氮是系统脱氮的主要途径,分别占植物组和对照组氮素输入总量的44.8%和28.7%;植物组微生物脱氮量较对照组增加了0.139 g,植物吸收脱氮量为0.182 g.可见植物吸收和加速微生物脱氮是菹草促进系统脱氮的两个主要途径.
  • 加载中
  • [1] 李茂兵, 陆晶, 杨国录. 蓝藻水华研究进展及预防控方法初探[J]. 环境工程, 2016, 34(3): 43-46.

    LI M B, LU J, YANG G L. Review of cyanobacteria bloom and a brief study on its preventive and control method[J]. Environmental Engineering, 2016, 34(3): 43-46(in Chinese).

    [2] 罗家海. 影响珠江广州河段局部水体黑臭的主要原因剖析[J]. 广州环境科学, 2001, 21(16): 10-13.

    LUO J H. Analysis on the dominant reasons of the effect that cause black and odorous in Pearl River[J]. Guangzhou Environmental Sciences, 2001, 21(16): 10-13(in Chinese).

    [3] 张乃星, 宋金明, 贺志鹏, 等. 海水无机碳对过量无机氮输入引起的富营养化响应的模拟研究[J]. 环境科学, 2008, 29(6): 1470-1477.

    ZHANG N X, SONG J M, HE Z P, et al. Effects of excessive inorganic nitrogen on inorganic carbon system in seawater simulated experiments[J]. Environmental Science, 2008, 29(6): 1470-1477(in Chinese).

    [4] 王立志, 王国祥, 俞振飞, 等. 沉水植物生长期对沉积物和上覆水之间磷迁移的影响[J]. 环境科学, 2012, 33(2): 386-391.

    WANG L Z, WANG G X, YU Z F, et al. Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period[J]. Environmental Science, 2012, 33(2): 386-391(in Chinese).

    [5] JATIN S, AMIT G, HARISH C. Managing water quality with aquatic macrophytes[J]. Environmental Science Biotechnology, 2008, 7:255-256.
    [6] 任文君,田在锋,宁国辉,等. 4种沉水植物对白洋淀富营养化水体净化效果研究[J]. 生态环境学报, 2011, 20(2):346-351.

    REN W J, TIAN Z F, NING G H, et al. The effect of purification research on four kinds of submerged plant on the baiyang lake eutrophication[J]. Ecology and Environmental Sciences, 2011, 20(2):346-351(in Chinese).

    [7] 潘迎捷.水产辞典[M].上海:上海辞书出版社,2007:284-353. PAN Y J. Aquatic dictionary[M]. Shanghai: Shanghai Cishu Press,2007:284

    -353(in Chinese).

    [8] WANG L Z. Response of Potamogeton crispus root characteristics to sediment heterogeneity[J]. Acta Ecologica Sinica, 2013,33: 282-286.
    [9] 林俊杰, 张帅, 杨振宇, 等. 干湿循环对三峡支流消落带沉积物中可转化态氮及其形态分布的影响[J]. 环境科学, 2015, 36(27): 2460-2463.

    LIN J J, ZHANG S, YANG Z Y, et al. Effect of drought and subsequent re-wetting cycles on transferable nitrogen and its form distribution in the sediment of water level fluctuating zone in the tributary of Three Gorge reservoir areas[J]. Environmental Science, 2015, 36(27): 2460-2463(in Chinese).

    [10] 国家环境保护总局. 水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社, 2002: 250-285. State Environmental Protection Administration. Methods for the monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing: China Environmental Science Press, 2002

    : 250-285(in Chinese).

    [11] 杨玉玮, 高学鲁, 李培苗. 烟台四十里湾柱状沉积物氮形态地球化学特征[J]. 环境科学, 2012, 33(10): 3450-3455.

    YANG Y W, GAO X L, LI P M. Geochemical characteristics of nitrogen in core sediments from Sishili Bay, China[J]. Environmental Science, 2012, 33(10): 3450-3455(in Chinese).

    [12] 吴建之, 葛滢, 王晓月. 过硫酸钾氧化吸光光度法测定植物总氮[J]. 理化检验:化学分册, 2000, 36(4):166-167.

    WU J Z, GE Y, WANG X Y. UV absorptio photometric determination of total nitrogen in plant after K2S2O8 oxidation[J]. Part B Chemical Analysis, 2000, 36(4): 166-167(in Chinese).

    [13] 张兰芳. 水质条件对沉水植物(伊乐藻、菹草)生长的影响[D]. 南京: 河海大学, 2006: 21-28. ZHANG L F. Effect of water quality on the growth of submerged macrophytes(Elodea nattalii and Potamageton crispus)[D]. Nanjing: Hohai University, 2006: 21

    -28(in Chinese).

    [14] 纪庆亮. 三种水生植物氨氮耐受性和冬季净水效果研究[D]. 南京: 南京林业大学, 2010: 39-42. JI Q L. NH4-N tolerance and water purification effects in winter of three aquatic plants[D]. Nanjing: Nanjing Forestry University, 2010

    : 39-42(in Chinese).

    [15] 赵风斌. 富营养化水体中常见沉水植物恢复重建影响因子研究[D]. 上海: 上海海洋大学, 2012: 12-14. ZHAO F B. Research on influence factors of common submerged macrophytes restoration in eutrophic water[D]. Shanghai: Shanghai Ocean University, 2012: 12

    -14(in Chinese).

    [16] 苏倩. 穗花狐尾藻和篦齿眼子菜氮磷累积量特征及净水功能[D]. 保定: 河北大学, 2013. SU Q. Nitrogen and phosphorus accumulation and water purification of Myriophyllum spicatum and Potamogeton pectinatus[D]. Baoding: Hebei University, 2013(in Chinese).
    [17] 赵安娜, 冯慕华, 郭萧, 等. 沉水植物氧化塘对污水厂尾水深度净化效果与机制的小试研究[J]. 湖泊科学, 2010, 22(4): 538-544.

    ZHAO A N, FENG M H, GUO X, et al. Experimental study on tail water purification of waste-water plant with submerged macrophyte oxidation pounds[J]. Journal of Lake Science, 2010, 22(4): 538-544(in Chinese).

    [18] 李倩, 田翠翠, 肖邦定, 等. 黑藻根际对沉积物中氨氧化细菌和古菌的影响[J]. 环境工程学报, 2014, 8(10): 4210-4213.

    LI Q, TIAN C C, XIAO B D, et al. Effect of Hydrilla verticillata rhizosphere on ammonia oxidizing bacteria and archaea in sediment[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4210-4213(in Chinese).

    [19] 庄源益, 戴树桂, 张明顺. 水中氨氮挥发影响因素探讨[J]. 环境化学, 1995, 14(4): 343-346.

    ZHUANG Y Y, DAI S G, ZHANG M S. The discussion about factors which influence the volatilization of ammonia nitrogen in water[J]. Environmental Chemistry, 1995, 14(4): 343-346(in Chinese).

    [20] CAMARGO V M, MARA D D. Nitrogen removal via ammonia volatilization in maturation[J]. Water Science and Technology,2007,55(11): 87-92.
  • 加载中
计量
  • 文章访问数:  1014
  • HTML全文浏览数:  980
  • PDF下载数:  292
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-08-30
  • 刊出日期:  2017-05-15
薛艳玲, 迟杰. 菹草对模拟系统外源氮素去除作用的影响[J]. 环境化学, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
引用本文: 薛艳玲, 迟杰. 菹草对模拟系统外源氮素去除作用的影响[J]. 环境化学, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
XUE Yanling, CHI Jie. Effect of Potamogeton crispus L. on the removal of exogenous nitrogen in the simulation system[J]. Environmental Chemistry, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001
Citation: XUE Yanling, CHI Jie. Effect of Potamogeton crispus L. on the removal of exogenous nitrogen in the simulation system[J]. Environmental Chemistry, 2017, 36(5): 1090-1096. doi: 10.7524/j.issn.0254-6108.2017.05.2016083001

菹草对模拟系统外源氮素去除作用的影响

  • 1. 天津大学环境科学与工程学院, 天津, 300350
基金项目:

海河干流水环境质量改善关键技术与综合示范(2014zx07203-009)资助

摘要: 通过构建室内模拟系统,研究了外源氮素恒定输入时沉水植物菹草对氮去除作用的影响.结果表明,(1)系统稳定后植物组对进水中总氮、氨氮和硝氮的去除率分别较无植物对照组提高了14.7%、25.0%和21.6%.(2)实验期间沉积物中可转化态氮含量整体呈下降趋势;与此同时,非转化态氮的含量上升,植物组的上升幅度是对照组的1.9倍.这表明菹草能够降低内源沉积物氮的释放风险.(3)整个实验期间生物脱氮是系统脱氮的主要途径,分别占植物组和对照组氮素输入总量的44.8%和28.7%;植物组微生物脱氮量较对照组增加了0.139 g,植物吸收脱氮量为0.182 g.可见植物吸收和加速微生物脱氮是菹草促进系统脱氮的两个主要途径.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回