g-C3N4光催化降解2,4-DCP的活性及机理
Activity and mechanism of photocatalytic degradation for 2,4-DCP over g-C3N4
-
摘要: 以三聚氰胺(Melamine)为原料,在高温条件下采用热缩合反应合成了石墨型氮化碳(g-C3N4)光催化剂.通过X-射线衍射(XRD)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)、衰减全反射红外光谱(ATR-IR)等技术对其物理结构及性质进行了表征,结果表明实验制备的g-C3N4为片层状结构,比表面积为15.34 m2·g-1.在可见光(λ>420 nm)照射下,用g-C3N4降解有机小分子污染物2,4-二氯苯酚(2,4-Dichlorophenol,2,4-DCP),该过程反应符合一级动力学,反应速率常数为0.0113 min-1,以0.67 g·L-1的用量反应250 min后2,4-DCP矿化率达到60%;2,4-DCP在弱酸性条件下(pH=5.4)的降解效率最高;通过捕获实验及电子自旋共振(ESR)实验表明,超氧自由基(O2·-)是g-C3N4光催化降解2,4-DCP过程中的主要活性物种.2,4-DCP的降解路径主要涉及脱氯、苯环开环和碳链断裂等反应历程.Abstract: Graphite carbon nitride (g-C3N4) photocatalyst was synthesized via thermal condensation at high temperatures using melamine as a starting material. The structure and properties of the catalyst was characterized by scanning electron microscopy (SEM),X-ray diffraction (XRD),UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and attenuated total reflection infrared spectroscopy (ATR-IR).The results indicate that the as-synthesized g-C3N4 had a layered structure with a specific surface area of 15.34 m2·g-1 and possed strong visible light absorption capacity. Photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) using g-C3N4 under visible light irradiation (λ>420 nm) corresponds to the first order kinetics with a reaction rate constant of 0.0113 min-1.After 250 min,the mineralization rate of 2,4-DCP in the presence of 0.67 g·L-1g-C3N4 reached 60%. The degradation efficiency of 2,4-DCP was highly enhanced in weak acid. Trapping experiments and electron spin resonance (ESR) experiments show that superoxide radical (O2·-) was the main active species in the photocatalytic degradation of 2,4-DCP.The main degradation pathways of 2,4-DCP include dechlorination,aromatic ring opening and carbon chain rupture.
-
Key words:
- graphite carbon nitride /
- 2, 4-dichlorophenol photocatalytic /
- degradation
-
-
[1] LIU L F,YANG F L,CHEN Y S,et al. Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2[J]. Chemical Engineering Journal,2012,181(1):189-195. [2] 蒋洁,陈江宁,于红霞,等. 多氯酚类化合物对离体培养细胞的QSAR研究及毒性机理初探[J]. 科学通报,2004,49(2): l25-129. JIANG J,CHEN J N,YU H X,et al. Polychlorinated phenolic compounds the QSAR study of in vitro cultured cells and toxic mechanism[J]. Chinese Science Bulletin,2004,49(2): l25-129(in Chinese).
[3] 王洋,陈艳萍,张业中,等. 2,4-二氯苯酚与人血清白蛋白相互作用的研究[J]. 化学与生物工程,2011,28(5): 28-33. WANG Y,CHEN Y P,ZHANG Y Z,et al. 2,4-dichlorophenol interact with human serum albumin[J]. Chemical and Biological Engineering,2011,28(5): 28-33(in Chinese).
[4] SATHISHKUMAR M,BINUPRIYA A R,KAVITHA D,et al. Adsorption potential of maize cob carbon for 2,4-dichlorophenol removal from aqueous solutions: Equilibrium,kinetics and thermodynamics modeling[J]. Chemical Engineering Journal,2009,147(2-3): 265-271. [5] 马淳安,王芬,卢金金,等. 2,4-二氯苯酚的电化学氧化降解反应研究[J]. 高等学校化学学报,2013,34(12): 2850-2854. MA C A,WANG F,LU J J,et al. 2,4-dichlorophenol electrochemical oxidation degradation research[J]. Chemical Journal of Chinese Universities,2013,34(12): 2850-2854(in Chinese).
[6] SINIRTAS E,ISLEYEN M,SOYLU G S P. Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives[J]. Chinese Journal of Catalysis,2016,37(4):607-615. [7] WEI J,XU X,LIU Y,et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters[J]. Water Research,2006,40(2):348-354. [8] YAN S C,LI Z S,ZOU Z G,et al. Photodegradation of rhodamine B and methyl orangeover boron-doped g-C3N4 under visible light irradiation[J]. Langmuir the Acs Journal of Surfaces & Colloids,2010,26(6):3894-3901. [9] CUI Y,HUANG J,FU X,WANG X,et al. Metal-free photocatalytic degradationof 4-chlorophenol in water by mesoporous carbon nitride semiconductors[J]. Catalysis Science & Technology,2012,2(7):1396-1402. [10] CHENC C,MAW H,SUNC Y,et al. Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride[J]. Science China,2012,55(12):2532-2536. [11] LIU G,NIU P,SUN C H,et al. Unique electronic structure induced high photoreactivity of sulfurdoped graphitic C3N4[J]. Journal of the American Chemical Society,2010,132(33):11642-11648. [12] JI H,CHANG F,HU X,et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal,2013,218(4):183-190. [13] 丛孚奇,曲蛟,丛俏 等. 磷酸氢二钠-柠檬酸缓冲溶液调控下白菜对钼矿区重金属污染土壤的修复[J]. 环境保护科学,2009,35(1):64-66. CONG F Q,QU J,CONG Q,Disodium hydrogen phosphate and citric acid buffer solution under the control of cabbage for molybdenum area of heavy metal contaminated soil repair[J]. Environmental Protection Science,2009,35(1):64-66(in Chinese).
[14] SU Y R,DING C H,DANG Y L,et al. First hydrothermal synthesis of Bi5O7Br and its photocatalytic properties for molecular oxygen activation and RhB degradation[J]. Applied Surface Science,2015,346(6):311-316. [15] YUE B,LIQ Y,YE H Y,et al. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light[J]. Science & Technology of Advanced Materials,2011,12(3):1462-1470. [16] 吴春红,方艳芬,赵萍,等. Ag-BiVO4复合光催化剂的制备及其可见光光催化机理的研究[J]. 分子催化,2015,29(4):369-381. WU C H,FANG Y F,ZHAO P,et al. Ag-BiVO4 compound preparation of photocatalyst and their visible light catalytic mechanism research[J]. Molecular Catalysis,2015,29(4):369-381(in Chinese).
[17] LI Q,FENG X,ZHANG X,et al. Photocatalytic degradation of bisphenol A using Ti-substituted hydroxyapatite[J]. Chinese Journal of Catalysis,2014,35(1):90-98. [18] PAPADAM T,XEKOUKOULOTAKIS N P,POULIOS I,et al. Photocatalytic transformation of acid orange 20 and Cr(Ⅵ) in aqueous TiO2 suspensions[J]. Journal of Photochemistry & Photobiology A Chemistry,2007,186(2-3):308-315. [19] 周薇,胡晓龙,方艳芬,等. 石墨烯-溴氧化铋复合物的制备及可见光光催化性能研究[J].分子催化,2014,28(4):367-375. ZHOU W,HU X L,FANG Y F,et al. Graphene-bromine bismuth oxide compound preparation and visible light catalytic performance study[J]. Molecular Catalysis,2014,28(4):367-375(in Chinese).
[20] 熊世威,方艳芬,黄应平,等. BiPO4纳米棒制备及光催化降解罗丹明B[J]. 环境化学,2013,32(10):1856-1862. XIONG S W,FANG Y F,HUANG Y P,et al. BiPO4 nanorods preparation and photocatalytic degradation of rhodamine B[J]. Environmental Chemistry,2013,32(10):1856-1862(in Chinese).
[21] SHENG H,JI H W,CHEN C C,et al. Direct four-electron reduction of O2 to H2O on TiO2 surfaces by pendant proton relay[J]. Angewandte Chemie International Edition,2013,52(37):9686-9690. [22] BAYARRI B,GIMENEZ J,CURCO D,et al. Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: Kinetics,actinometries and models[J]. Catalysis Today,2005,101(3-4):227-236. [23] WANG S L,MA W H,FANG Y F,et al. Bismuth oxybromide promoted detoxification of cylindrospermopsin under UV and visible light illumination[J]. Applied Catalysis B Environmental,2014,150-151(9):380-388. [24] LU Q F,YU J,GAO J Z,et al. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis[J]. Journal of Hazardous Materials,2006,136(3):526-531. -

计量
- 文章访问数: 1661
- HTML全文浏览数: 1596
- PDF下载数: 619
- 施引文献: 0