基于功能化纳米材料的环境中重金属快速检测研究进展

刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁. 基于功能化纳米材料的环境中重金属快速检测研究进展[J]. 环境化学, 2017, 36(11): 2357-2365. doi: 10.7524/j.issn.0254-6108.2017032305
引用本文: 刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁. 基于功能化纳米材料的环境中重金属快速检测研究进展[J]. 环境化学, 2017, 36(11): 2357-2365. doi: 10.7524/j.issn.0254-6108.2017032305
LIU Guangyang, LIU Zhongxiao, ZHANG Yanguo, GAO Ping, XU Donghui, ZHENG Shuning. Studies on the rapid detection of heavy metals in environment based on functionalized nanomaterials[J]. Environmental Chemistry, 2017, 36(11): 2357-2365. doi: 10.7524/j.issn.0254-6108.2017032305
Citation: LIU Guangyang, LIU Zhongxiao, ZHANG Yanguo, GAO Ping, XU Donghui, ZHENG Shuning. Studies on the rapid detection of heavy metals in environment based on functionalized nanomaterials[J]. Environmental Chemistry, 2017, 36(11): 2357-2365. doi: 10.7524/j.issn.0254-6108.2017032305

基于功能化纳米材料的环境中重金属快速检测研究进展

  • 基金项目:

    国家蔬菜产品质量安全风险评估重大专项(GJFP2017002)和国家果蔬植物生长调节剂质量安全风险评估重大专项(GJFP201701401)资助.

Studies on the rapid detection of heavy metals in environment based on functionalized nanomaterials

  • Fund Project: Supported by the Project of Risk Assessment on Vegetable Products (GJFP2017002) and the Project of Risk Assessment on Plant Growth Regulator of Fruit and Vegetables (GJFP201701401).
  • 摘要: 重金属污染对生态环境和人类健康均具有极大危害,建立灵敏、快捷、高效的重金属检测技术具有非常重要的现实意义.现有检测技术对大型仪器设备具有较强的依赖性,并且在检测条件、时间以及成本上的要求较高,难以满足当前重金属快速监测和预警工作的需要.纳米材料的飞速发展为解决环境重金属污染物检测所面临的问题提供了良好的理论基础和技术支持.功能化纳米材料与传统检测方法的结合,衍生出具有高灵敏、高通量的快速检测方法.本文主要综述了近年来常用的几种功能识别分子和功能化纳米材料在环境中重金属快速检测应用的研究进展,指出了重金属快速检测技术在实际应用中可能面临的问题,并对未来的发展前景进行了展望.
  • 加载中
  • [1] CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67:489-512.
    [2] TOMIYASU T, TAKENAKA S, NOGUCHI Y, et al. Estimation of the residual total mercury in marine sediments of Minamata Bay after a pollution prevention project[J]. Marine Chemistry, 2014, 159:19-24.
    [3] ELCI A, KABAKCI E, ELCI L. Solid-phase extractive preconcentration of trace copper as its Calmagite anionic chelate using a polyaniline column forflame atomic absorption s pectrometric determination[J]. Analytical Letters, 2015, 48(4):632-646.
    [4] ZHANG Y, ZHONG C, ZHANG Q, et al. Graphene oxide-TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection[J]. RSC Advances, 2015, 5(8):5996-6005.
    [5] SU S, CHEN B, HE M, et al. Graphene oxide-silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples[J]. Talanta, 2014, 123:1-9.
    [6] CHENG H, WU C, SHEN L, et al. Online anion exchange column preconcentration and high performance liquid chromatographic separation with inductively coupled plasma mass spectrometry detection for mercury speciation analysis[J]. Analytica Chimica Acta, 2014, 828:9-16.
    [7] ROSS J W, DEMARS R D, SHAIN I. Analytical applications of hanging mercury drop electrode[J]. Analytical Chemistry, 1956, 28(11):1768-1771.
    [8] CUI L, WU J, JU H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials[J]. Biosensors and Bioelectronics, 2015, 63:276-286.
    [9] VAN DEN BERG C M G, HUANG Z Q. Direct electrochemical determination of dissolved vanadium in seawater by cathodic stripping voltammetry with the hanging mercury drop electrode[J]. Analytical Chemistry, 1984, 56:2383-2386.
    [10] VAN DEN BERG C M G, HUANG Z Q. Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177(1-2):269-280.
    [11] FERREIRA M A, BARROS A A. Determination of As (Ⅲ) and arsenic (V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode[J]. Analytica Chimica Acta, 2002, 459(1):151-159.
    [12] WANG J, LU J, HOCEVAR S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14):3218-3222.
    [13] WANG J, LU J. Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel[J]. Electrochemistry Communications, 2000, 2(6):390-393.
    [14] LIN L, LAWRENCE N S, THONGNGAMDEE S, et al. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode[J]. Talanta, 2005, 65(1):144-148.
    [15] KOKKINOS C, ECONOMOU A. Stripping analysis at bismuth-based electrodes[J]. Current Analytical Chemistry, 2008, 4(3):183-190.
    [16] DUWENSEE H, ADAMOVSKI M, FLECHSIG G U. Adsorptive stripping voltammetric detection of daunomycin at mercury and bismuth alloy electrodes[J]. International Journal of Electrochemical Science, 2007, 2(6):498-507.
    [17] SERRANO N, DÍAZ-CRUZ J M, ARIÑO C, et al. Antimony-based electrodes for analytical determinations[J]. TrAC Trends in Analytical Chemistry, 2016, 77:203-213.
    [18] CADEVALL M, ROS J, MERKOÇI A. Bismuth-based nanomaterials and platforms for sensing and biosensing applications[J]. Functional and Physical Properties of Polymer Nanocomposites, 2016:159-182.
    [19] WEI Y, YANG R, YU X Y, et al. Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers[J]. Analyst, 2012, 137(9):2183-2191.
    [20] RAHMAN M M, KHAN S B, ASIRI A M, et al. Selective detection of toxic Pb (Ⅱ) ions based on wet-chemically prepared nanosheets integrated CuO-ZnO nanocomposites[J]. Composites Part B:Engineering, 2013, 54:215-223.
    [21] WEI Y, GAO C, MENG F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (Ⅱ), lead (Ⅱ), copper (Ⅱ), and mercury (Ⅱ):An interesting favorable mutual interference[J]. The Journal of Physical Chemistry C, 2011, 116(1):1034-1041.
    [22] NOLAN E M, LIPPARD S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media[J]. Journal of the American Chemical Society, 2003, 125(47):14270-14271.
    [23] MU H, GONG R, MA Q, et al. A novel colorimetric and fluorescent chemosensor:Synthesis and selective detection for Cu2+ and Hg2+[J]. Tetrahedron Letters, 2007, 48(31):5525-5529.
    [24] WU D, HUANG W, DUAN C, et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media[J]. Inorganic Chemistry, 2007, 46(5):1538-1540.
    [25] EZEH V C, HARROP T C. A sensitive and selective fluorescence sensor for the detection of arsenic (Ⅲ) in organic media[J]. Inorganic Chemistry, 2012, 51(3):1213-1215.
    [26] LI J, LU L, KANG T, et al. Intense charge transfer surface based on graphene and thymine-Hg (Ⅱ)-thymine base pairs for detection of Hg2+[J]. Biosensors and Bioelectronics, 2016, 77:740-745.
    [27] LIU C W, HUANG C C, CHANG H T. Highly selective DNA-based sensor for lead (Ⅱ) and mercury (Ⅱ) ions[J]. Analytical Chemistry, 2009, 81(6):2383-2387.
    [28] LI T, WANG E, DONG S. Lead (Ⅱ)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection[J]. Analytical Chemistry, 2010, 82(4):1515-1520.
    [29] CHEN W, CAO F, ZHENG W, et al. Detection of the nanomolar level of total Cr[(Ⅲ) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models[J]. Nanoscale, 2015, 7(5):2042-2049.
    [30] LIU D, QU W, CHEN W, et al. Highly sensitive, colorimetric detection of mercury (Ⅱ) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature[J]. Analytical Chemistry, 2010, 82(23):9606-9610.
    [31] DONG C, WU G, WANG Z, et al. Selective colorimetric detection of Cr (Ⅲ) and Cr (VI) using gallic acid capped gold nanoparticles[J]. Dalton Transactions, 2016, 45(20):8347-8354.
    [32] YANG N, GAO Y, ZHANG Y, et al. A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles[J]. Talanta, 2014, 122:272-277.
    [33] GAO Y, LI X, LI Y, et al. A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates[J]. Chemical Communications, 2014, 50(49):6447-6450.
    [34] LI Y L, LENG Y M, ZHANG Y J, et al. A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine[J]. Sensors and Actuators B:Chemical, 2014, 200:140-146.
    [35] MIAO L J, XIN J W, SHEN Z Y, et al. Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity[J]. Sensors and Actuators B:Chemical, 2013, 176:906-912.
    [36] ZHANG Y, LENG Y, MIAO L, et al. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles[J]. Dalton Transactions, 2013, 42(15):5485-5490.
    [37] GAO Y X, XIN J W, SHEN Z Y, et al. A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles[J]. Sensors and Actuators B:Chemical, 2013, 181:288-293.
    [38] CHEN N, ZHANG Y, LIU H, et al. A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12):6509-6516.
    [39] CHEN N, ZHANG Y, LIU H, et al. High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms[J]. ACS Sensors, 2016, 1(5):521-527.
    [40] XIN J, ZHANG F, GAO Y, et al. A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Agcore-Aushell nanoparticles at room temperature[J]. Talanta, 2012, 101:122-127.
    [41] RATNARATHORN N, CHAILAPAKUL O, DUNGCHAI W. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles[J]. Talanta, 2015, 132:613-618.
    [42] ZHOU Y, WANG S, ZHANG K, et al. Visual detection of copper (Ⅱ) by azide-and alkyne-functionalized gold nanoparticles using click chemistry[J]. Angewandte Chemie, 2008, 120(39):7564-7566.
    [43] MANSY S, TOBIAS R S. Heavy metal-nucleotide reactions. IV. Nature of the reaction between mercury (Ⅱ) and uridine or thymidine. Vibrational spectroscopic studies on binding to N (3), C (4)=O, and C (5) of the uracil base[J]. Inorganic Chemistry, 1975, 14(2):287-291.
    [44] LIU C W, HSIEH Y T, HUANG C C, et al. Detection of mercury (Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J]. Chemical Communications, 2008(19):2242-2244.
    [45] LI D, WIECKOWSKA A, WILLNER I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines[J]. Angewandte Chemie, 2008, 120(21):3991-3995.
    [46] KANG T, HONG S, MOON J, et al. Fabrication of reusable sensor for detection of Cu2+ in an aqueous solution using a self-assembled monolayer with surface plasmon resonance spectroscopy[J]. Chemical Communications, 2005(29):3721-3723.
    [47] WANG L, LI T, DU Y, et al. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury (Ⅱ) ions[J]. Biosensors and Bioelectronics, 2010, 25(12):2622-2626.
    [48] JALINK K. hiFRET:some tailwind for FRET resolves weak protein interactions[J]. Nature Methods, 2013, 10(10):947-948.
    [49] YAN Y Q, TANG X, WANG Y S, et al. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles[J]. Microchimica Acta, 2015, 182(7-8):1353-1360.
    [50] WANG J, ZHAO W W, ZHOU H, et al. Amplified electrochemiluminescence detection of DNA-binding protein based on the synergy effect of electron and energy transfer between CdS nanocrystals and gold nanoparticles[J]. Biosensors and Bioelectronics, 2013, 41:615-620.
    [51] ALGAR W R, MASSEY M, KRULL U J. The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3):292-306.
    [52] HE X, LIU H, LI Y, et al. Gold nanoparticle-based fluorometric and colorimetric sensing of copper (Ⅱ) ions[J]. Advanced Materials, 2005, 17(23):2811-2815.
    [53] HUANG C C, CHANG H T. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury (Ⅱ) in aqueous solution[J]. Analytical Chemistry, 2006, 78(24):8332-8338.
    [54] PYNE S, SAHOO G P, BHUI D K, et al. FRET based ultrasensor for detection of Hg (Ⅱ) in water:A comparative study using citrate and marcapto propanoic acid as stabilizer of AuNPs[J]. Sensors and Actuators B:Chemical, 2011, 160(1):1141-1148.
    [55] MASHHADIZADEH M H, AMOLI-DIVA M, SHAPOURI M R, et al. Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles[J]. Food Chemistry, 2014, 151:300-305.
    [56] LV X, WU W, NIU C, et al. A facile "turn-on" fluorescent method with high sensitivity for Hg2+ detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions[J]. Talanta, 2016, 151:62-67.
    [57] SILVI S, CREDI A. Luminescent sensors based on quantum dot-molecule conjugates[J]. Chemical Society Reviews, 2015, 44(13):4275-4289.
    [58] NAKANE Y, TSUKASAKI Y, SAKATA T, et al. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000-1400 nm)[J]. Chemical Communications, 2013, 49(69):7584-7586.
    [59] FREEMAN R, GIRSH J, WILLNER I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing[J]. ACS Applied Materials & Interfaces, 2013, 5(8):2815-2834.
    [60] SUNG T W, LO Y L, CHANG I L. Highly sensitive and selective fluorescence probe for Cr3+ ion detection using water-soluble CdSe QDs[J]. Sensors and Actuators B:Chemical, 2014, 202:1349-1356.
    [61] CHEN Y, ROSENZWEIG Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19):5132-5138.
    [62] FERNÁNDEZ-ARGVELLES M T, JIN W J, COSTA-FERNÁNDEZ J M, et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (Ⅱ) in aqueous solutions by luminescent measurements[J]. Analytica Chimica Acta, 2005, 549(1):20-25.
    [63] CHEN J L, ZHU C Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination[J]. Analytica Chimica Acta, 2005, 546(2):147-153.
    [64] CHAN Y H, CHEN J, LIU Q, et al. Ultrasensitive copper (Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots[J]. Analytical Chemistry, 2010, 82(9):3671-3678.
    [65] LI X, ZHOU H, FU C, et al. A novel design of engineered multi-walled carbon nanotubes material and its improved performance in simultaneous detection of Cd (Ⅱ) and Pb (Ⅱ) by square wave anodic stripping voltammetry[J]. Sensors and Actuators B:Chemical, 2016, 236:144-152.
    [66] WANG Y, SHAO Y, MATSON D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS nano, 2010, 4(4):1790-1798.
    [67] RUECHA N, RODTHONGKUM N, CATE D M, et al. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn (Ⅱ), Cd (Ⅱ), and Pb (Ⅱ)[J]. Analytica Chimica Acta, 2015, 874:40-48.
    [68] GONG J, ZHOU T, SONG D, et al. Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (Ⅱ)[J]. Sensors and Actuators B:Chemical, 2010, 150(2):491-497.
  • 加载中
计量
  • 文章访问数:  1176
  • HTML全文浏览数:  1083
  • PDF下载数:  252
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-23
  • 刊出日期:  2017-11-15

基于功能化纳米材料的环境中重金属快速检测研究进展

  • 1. 中国农业科学院蔬菜花卉研究所, 农业部蔬菜质量安全控制重点实验室, 北京, 100081
基金项目:

国家蔬菜产品质量安全风险评估重大专项(GJFP2017002)和国家果蔬植物生长调节剂质量安全风险评估重大专项(GJFP201701401)资助.

摘要: 重金属污染对生态环境和人类健康均具有极大危害,建立灵敏、快捷、高效的重金属检测技术具有非常重要的现实意义.现有检测技术对大型仪器设备具有较强的依赖性,并且在检测条件、时间以及成本上的要求较高,难以满足当前重金属快速监测和预警工作的需要.纳米材料的飞速发展为解决环境重金属污染物检测所面临的问题提供了良好的理论基础和技术支持.功能化纳米材料与传统检测方法的结合,衍生出具有高灵敏、高通量的快速检测方法.本文主要综述了近年来常用的几种功能识别分子和功能化纳米材料在环境中重金属快速检测应用的研究进展,指出了重金属快速检测技术在实际应用中可能面临的问题,并对未来的发展前景进行了展望.

English Abstract

参考文献 (68)

目录

/

返回文章
返回