水生系统中溶解态有机质的激发效应研究进展

程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
引用本文: 程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
CHENG Qiong, ZHUANG Wan, YANG Liyang. Priming effect of dissolved organic matter in aquatic ecosystems: A review[J]. Environmental Chemistry, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
Citation: CHENG Qiong, ZHUANG Wan, YANG Liyang. Priming effect of dissolved organic matter in aquatic ecosystems: A review[J]. Environmental Chemistry, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802

水生系统中溶解态有机质的激发效应研究进展

  • 基金项目:

    国家自然科学基金(41606094)和福州大学贵重仪器设备开放测试基金(2017T019)资助.

Priming effect of dissolved organic matter in aquatic ecosystems: A review

  • Fund Project: Supported by the National Natural Science Foundation of China(41606094)and the Valuable Equipments Foundation of Fuzhou University(2017T019).
  • 摘要: 溶解态有机质(DOM)的迁移转化是影响水环境生物地球化学循环和生态系统功能的重要过程.DOM是来源丰富、化学结构和活性不同的成千上万种化合物的混合物.其中,活性组分的存在可能促进微生物对惰性组分的降解,形成清除惰性DOM的一个重要机制,即激发效应,对全球碳循环和生态系统产生深远影响.当前,水生系统DOM激发效应研究主要运用各种化学和生物的方法,监测添加活性DOM对惰性DOM的降解速率和微生物丰度与群落结构的改变.在不同的研究体系中,存在正激发、负激发和无激发等3种效应,受到活性DOM和惰性DOM的特征、微生物响应特征和环境因子等的综合作用.新方法的应用和典型区域、典型事件的观测,将有助于评估水生系统DOM的激发效应、深入理解DOM的微生物转化过程.
  • 加载中
  • [1] FINDLAY S E G, SINSABAUGH R L. Aquatic ecosystems:Interactivity of dissolved organic matter[M]. California:Academic Press, 2003.
    [2] STUBBINS A,SPENCER R G M, CHEN H, et al. Illuminated darkness:Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010, 55(4):1467-1477.
    [3] ROSARIO-ORTIZ F L. Advances in the physicochemical characterization of dissolved organic matter:Impact on natural and engineered systems[M]. Oxford:Oxford University Press, 2014.
    [4] HANSELL D A, CARLSON C A. Biogeochemistry of marine dissolved organic matter.Second edition[M]. Pittsburgh:Academic Press, 2015.
    [5] BATTINT J, KAPLAN L A, FINDLAY S, et al. Biophysical controls on organic carbon fluxes in fluvial networks[J]. Nature Geoscience, 2009, 1(8):95-100.
    [6] JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter:Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8):593-599.
    [7] XIE H X, AUBRY C, BÉLANGER S, et al. The dynamics of absorption coefficients of CDOM and particles in the St. Lawrence estuarine system:Biogeochemical and physical implications[J]. Marine Chemistry, 2012, 128-129(1):44-56.
    [8] STEDMON C A, MARKAGER S, TRANYIK L, et al. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea[J]. Marine Chemistry, 2007, 104(3/4):227-240.
    [9] CHEN Y, YANG G P, LIU L, et al. Sources, behaviors and degradation of dissolved organic matter in the East China Sea[J]. Journal of Marine Systems, 2015, 155:84-97.
    [10] CUI H Y, SHI J H, QIU L L. Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang, China[J]. Environmental Science and Pollution Research, 2016, 23(10):10058-10071.
    [11] COBLE P G. Marine optical biogeochemistry:The chemistry of ocean color[J]. Cheminform, 2007, 38(20):402-418.
    [12] YAN M Q, KORSHIN G V. Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter[J]. Environmental Science & Technology, 2014, 48(6):3177-3185.
    [13] YANG L Y, JIN H, LEE S. Dynamics of dissolved organic matter during four storm events in two forest streams:source, export, and implications for harmful disinfection byproduct formation[J]. Environmental Science and Pollution Research, 2015, 22(12):9173-9183.
    [14] HOOD E, FELLMAN J, SPENCER R G M, et al. Glaciers as a source of ancient and labile organic matter to the marine environment[J]. Nature, 2009, 462(7276):1044-1047.
    [15] ARRIETA J M, MAYOL E, HANSMAN R L, et al. Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean[J]. Science, 2015, 348(6232):331-333.
    [16] JIAO N Z, LEGENDRE L, ROBINSON C, et al. Comment on dilution limits dissolved organic carbon utilization in the deep ocean[J]. Science, 2015, 350(6267):1483-1483.
    [17] BIANCHI T S, GARCIA-TIGREROS F, YVON-LEWIS S A, et al. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event[J]. Geophysical Research Letters, 2013, 40(1):116-122.
    [18] HOTCHKISS E R, HALL R O, BAKER M A, et al. Modeling priming effects on microbial consumption of dissolved organic carbon in rivers[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(5):982-995.
    [19] CATALÁN N, KELLERMAN A M, PETER H, et al. Absence of a priming effect on dissolved organic carbon degradation in lake water[J]. Limnology & Oceanography, 2015, 60(1):159-168.
    [20] BIANCHI T S, THOMTON D C O, YVON-LEWIS S A, et al. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system[J]. Geophysical Research Letters, 2015, 42(13):5460-5467.
    [21] GUENET B, DANGER M, ABBADIE L, et al. Priming effect:Bridging the gap between terrestrial and aquatic ecology[J]. Ecology, 2010, 91(10):2850-2861.
    [22] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean:A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences, 2011, 108(49):19473-19481.
    [23] FELLMAN J B, HOOD E, EDWARDS R T, et al. Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds[J]. Journal of Geophysical Research Biogeosciences, 2015, 114(G1):295-311.
    [24] YANG L Y, CHEN C T A, HONG H S, et al. Mixing behavior and bioavailability of dissolved organic matter in two contrasting subterranean estuaries as revealed by fluorescence spectroscopy and parallel factor analysis[J]. Estuarine Coastal & Shelf Science, 2015, 166:161-169.
    [25] HANNIDES A K, ALLER R C. Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization[J]. Limnology & Oceanography, 2016, 61(5):1640-1650.
    [26] BLANCHET M, PRINGAULT O, PANAGIOTOPOULOS C, et al. When riverine dissolved organic matter (DOM) meets labile DOM in coastal waters:Changes in bacterial community activity and composition[J]. Aquatic Sciences, 2017, 79(1):27-43.
    [27] WARD N D, BIANCHI T S, SAWAKUCHI H O, et al. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River[J]. Journal of Geophysical Research Biogeosciences, 2016, 121(6):1522-1539.
    [28] DORADO-GARCÍA I, SYVÁRANTA J, DEVLIN S P. Experimental assessment of a possible microbial priming effect in a humic boreal lake[J]. Aquatic Sciences, 2016, 78(1):191-202.
    [29] BENGTSSON M M, WAGNER K, BURNS N R, et al. No evidence of aquatic priming effects in hyporheic zone microcosms[J]. Scientific Reports, 2014, 4:5187.
    [30] MORLING K, RAEKE J, KAMJUNKE N, et al. Tracing aquatic priming effect during microbial decomposition of terrestrial dissolved organic carbon in chemostat experiments.[J]. Microbial Ecology, 2017:1-16.
    [31] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:A review[J]. Limnology & Oceanography, 2010, 55(6):2452-2462.
    [32] ISHⅡ S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems:A critical review[J]. Environmental Science & Technology, 2012, 46(4):2006-2017.
    [33] YANG, L Y, ZHUANG W E, CHEN C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC[J]. Water Research, 2017, 111:195-203.
    [34] HERZSPRUNG P, HERTKORN N, TVMPLING W V, et al. Molecular formula assignment for dissolved organic matter (DOM) using high-field FT-ICR-MS:chemical perspective and validation of sulphur-rich organic components (CHOS) in pit lake samples[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10):2461-2469.
    [35] HERZSPRUNG P, TVMPLING W V, WENDT-POTTHOFF K, et al. High field FT-ICR mass spectrometry data sets enlighten qualitative DOM alteration in lake sediment porewater profiles[J]. Organic Geochemistry, 2017, 108:51-60.
    [36] KOCH B P, LUDWICHOWSKI K U, KATTNER G, et al. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS[J]. Marine Chemistry, 2008, 111(3/4):233-241.
    [37] KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology & Biochemistry, 2000, 32(11-12):1485-1498.
    [38] BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:Critical review[J]. Biology and Fertility of Soils, 2008, 45(2):115-131.
    [39] FARJALLA V F, MARINHO C C, FARIA B M, et al. Synergy of fresh and accumulated organic matter to bacterial growth[J]. Microbial Ecology, 2009, 57(4):657-666.
    [40] GUENET B, JUAREZ S, BARDOUX G, et al. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil[J]. Soil Biology & Biochemistry, 2012, 52(3):43-48.
    [41] SMITH J L, BELL J M, JR H B, et al. The initial rate of C substrate utilization and longer-term soil C storage[J]. Biology and Fertility of Soils, 2007, 44(2):315-320.
    [42] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:A tutorial[J]. Limnology & Oceanography Methods, 2008, 6(11):572-579.
  • 加载中
计量
  • 文章访问数:  1600
  • HTML全文浏览数:  1469
  • PDF下载数:  681
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-08
  • 刊出日期:  2018-01-15
程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
引用本文: 程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
CHENG Qiong, ZHUANG Wan, YANG Liyang. Priming effect of dissolved organic matter in aquatic ecosystems: A review[J]. Environmental Chemistry, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802
Citation: CHENG Qiong, ZHUANG Wan, YANG Liyang. Priming effect of dissolved organic matter in aquatic ecosystems: A review[J]. Environmental Chemistry, 2018, 37(1): 10-18. doi: 10.7524/j.issn.0254-6108.2017050802

水生系统中溶解态有机质的激发效应研究进展

  • 1.  福州大学环境与资源学院, 福州, 350116;
  • 2.  福建农林大学生命科学学院, 福州, 350002
基金项目:

国家自然科学基金(41606094)和福州大学贵重仪器设备开放测试基金(2017T019)资助.

摘要: 溶解态有机质(DOM)的迁移转化是影响水环境生物地球化学循环和生态系统功能的重要过程.DOM是来源丰富、化学结构和活性不同的成千上万种化合物的混合物.其中,活性组分的存在可能促进微生物对惰性组分的降解,形成清除惰性DOM的一个重要机制,即激发效应,对全球碳循环和生态系统产生深远影响.当前,水生系统DOM激发效应研究主要运用各种化学和生物的方法,监测添加活性DOM对惰性DOM的降解速率和微生物丰度与群落结构的改变.在不同的研究体系中,存在正激发、负激发和无激发等3种效应,受到活性DOM和惰性DOM的特征、微生物响应特征和环境因子等的综合作用.新方法的应用和典型区域、典型事件的观测,将有助于评估水生系统DOM的激发效应、深入理解DOM的微生物转化过程.

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回