高指数晶面二氧化钛对砷、锑的共吸附去除

聂晓, 阎莉, 张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学, 2018, 37(2): 318-326. doi: 10.7524/j.issn.0254-6108.2017061202
引用本文: 聂晓, 阎莉, 张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学, 2018, 37(2): 318-326. doi: 10.7524/j.issn.0254-6108.2017061202
NIE Xiao, YAN Li, ZHANG Jianfeng. Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)[J]. Environmental Chemistry, 2018, 37(2): 318-326. doi: 10.7524/j.issn.0254-6108.2017061202
Citation: NIE Xiao, YAN Li, ZHANG Jianfeng. Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)[J]. Environmental Chemistry, 2018, 37(2): 318-326. doi: 10.7524/j.issn.0254-6108.2017061202

高指数晶面二氧化钛对砷、锑的共吸附去除

  • 基金项目:

    国家自然科学基金(41373123)和陕西省自然科学基础研究计划(2016JM5080)资助.

Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)

  • Fund Project: Supported by the National Natural Science Foundation of China(41373123) and Natural Science Basic Research Plan in Shaanxi Province of China(2016JM5080).
  • 摘要: 砷(As)和锑(Sb)作为有毒元素,造成的环境污染严重威胁人类健康.目前,由于缺乏对共存体系下砷锑表面化学性质的研究以及高效的吸附材料,砷、锑的共去除是环境领域面临的一大挑战.本文以高指数晶面{201}二氧化钛(HTiO2)为吸附剂,研究砷锑在其表面的吸附行为.Langmuir吸附等温线结果表明,As(Ⅲ)、Sb(Ⅲ)、As(Ⅴ)、Sb(Ⅴ)在HTiO2表面的最大吸附量分别为0.407、0.861、0.197、0.181 mmol·g-1.砷、锑在HTiO2表面的吸附动力学符合拟二级动力学方程,说明化学吸附是控制吸附速率的关键因素.pH边共吸附实验表明,HTiO2对As(Ⅲ)的吸附基本不受pH的影响;对Sb(Ⅲ)的吸附随pH的升高先增大后减小;对As(Ⅴ)和Sb(Ⅴ)的吸附随pH的升高逐渐降低.Zeta电位结果表明,砷锑吸附后HTiO2表面带负电,说明砷、锑在HTiO2表面形成带负电的稳定内层配合物.本研究为水体中砷锑的共吸附去除提供了新信息.
  • 加载中
  • [1] LAN B Y,WANG Y X,WANG X,et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal,2016,292:389-397.
    [2] UNGUREANU G,SANTOS S,BOAVENTURA R,et al. Arsenic and antimony in water and wastewater:Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management,2015,151:326-342.
    [3] HILLER E,LALINSKA B,CHOVAN M,et al. Arsenic and antimony contamination of waters,stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians,Slovakia[J]. Applied Geochemistry,2012,27(3):598-614.
    [4] HE M C,WANG X Q,WU F C,et al. Antimony pollution in China[J]. Science of the Total Environment,2012,421(3):41-50.
    [5] OKKENHAUG G,ZHU Y G,HE J W,et al. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan,China:Differences in mechanisms controlling soil sequestration and uptake in rice[J]. Environmental Science & Technology,2012,46(6):3155-3162.
    [6] WILSON S C,LOCKWOOD P V,ASHLEY P M,et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution,2010,158(5):1169-1181.
    [7] HU X Y,GUO X J,HE M C,et al. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores[J]. Journal of Environmental Sciences,2016,44(6):171-179.
    [8] MANNING B A,FENDORF S E,BOSTICK B,et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite[J]. Environmental Science & Technology,2002,36(5):976-981.
    [9] SUN Y K,ZHOU G M,XIONG X M,et al. Enhanced arsenite removal from water by Ti(SO4)2 coagulation[J]. Water Research,2013,47(13):4340-4348.
    [10] KANG M,KAWASAKI M,TAMADA S,et al. Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes[J]. Desalination,2001,133(1):93-93.
    [11] WALTERS G I,MOORE V C,ROBERTSON A S,et al. An outbreak of occupational asthma due to chromium and cobalt[J]. Occupational Medicine-Oxford,2012,62(7):533-540.
    [12] CHEN Y S,XU W Z,SHEN H L,et al. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach[J]. Environmental Science & Technology,2013,47(16):9355-9362.
    [13] ARCIBAR-OROZCO J A,JOSUE D B,RIOS-HURTADO J C,et al. Influence of iron content,surface area and charge distribution in the arsenic removal by activated carbons[J]. Chemical Engineering Journal,2014,249:201-209.
    [14] SEN M,PAL P. Treatment of arsenic-contaminated groundwater by a low cost activated alumina adsorbent prepared by partial thermal dehydration[J]. Desalination and Water Treatment,2009,11(1-3):275-282.
    [15] TRESINTSI S,SIMEONIDIS K,VOURLIAS G,et al. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity:Study of Fe(Ⅱ) oxidation-precipitation parameters[J]. Water Research,2012,46(16):5255-5267.
    [16] YAN L,HU S,JING C Y. Recent progress of arsenic adsorption on TiO2 in the presence of coexisting ions:A review[J]. Journal of Environmental Sciences,2016,49(11):74-85.
    [17] JIANG H B,CUAN Q A,WEN C Z,et al. Anatase TiO2 crystals with exposed high-index facets[J]. Angewandte Chemie-International Edition,2011,50(16):3764-3768.
    [18] SONG J Y,YAN L,DUAN J M,et al. TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation[J]. Journal of Colloid and Interface Science,2017,496:522-530.
    [19] WU H B,CHEN J S,LOU X W,et al. Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties[J]. Nanoscale,2011,3(10):4082-4084.
    [20] RIGBY S J,AL-OBAIDI A H R,LEE S K,et al. The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials[J]. Applied Surface Science,2006,252(22):7948-7952.
    [21] WANG L,WAN C L,ZHANG Y,et al. Mechanism of enhanced Sb(Ⅴ) removal from aqueous solution using chemically modified aerobic granules[J]. Journal of Hazardous Materials,2015,284:43-49.
    [22] MAHMOUD M E,NABIL G M,EL-MALLAH N M,et al. Kinetics,isotherm,and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent[J]. Journal of Industrial and Engineering Chemistry,2016,37:156-167.
    [23] LEUZ A K,MOENCH H,JOHNSON C A. Sorption of Sb(Ⅲ) and Sb(Ⅴ) to goethite:Influence on Sb(Ⅲ) oxidation and mobilization[J]. Environmental Science & Technology,2006,40(23):7277-7282.
    [24] QI P F,PICHLER T. Competitive adsorption of As(Ⅲ),As(Ⅴ),Sb(Ⅲ) and Sb(Ⅴ) onto ferrihydrite in multi-component systems:Implications for mobility and distribution[J]. Journal of Hazardous Materials,2017,330:142-148.
    [25] YAN L,SONG J Y,CHAN T S,et al. Insights into antimony adsorption on {001} TiO2:XAFS and DFT study[J]. Environmental Science & Technology,2017,DOI:10.1021/acs.est.7b00807.
    [26] 聂麦茜,胡珊,卢金锁,等. 镉对砷在二氧化钛上吸附性能的影响[J]. 环境化学,2011,30(4):739-746.

    NIE M Q,HU S,LU J S,et al. Cadmium effect on arsenate adsorption on TiO2[J]. Environmental Chemistry,2011,30(4):739-746(in Chinese).

  • 加载中
计量
  • 文章访问数:  829
  • HTML全文浏览数:  756
  • PDF下载数:  415
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-06-12
  • 刊出日期:  2018-02-15

高指数晶面二氧化钛对砷、锑的共吸附去除

  • 1.  西安建筑科技大学环境与市政工程学院, 西安, 710055;
  • 2.  中国科学院生态环境研究中心, 北京, 100085;
  • 3.  中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(41373123)和陕西省自然科学基础研究计划(2016JM5080)资助.

摘要: 砷(As)和锑(Sb)作为有毒元素,造成的环境污染严重威胁人类健康.目前,由于缺乏对共存体系下砷锑表面化学性质的研究以及高效的吸附材料,砷、锑的共去除是环境领域面临的一大挑战.本文以高指数晶面{201}二氧化钛(HTiO2)为吸附剂,研究砷锑在其表面的吸附行为.Langmuir吸附等温线结果表明,As(Ⅲ)、Sb(Ⅲ)、As(Ⅴ)、Sb(Ⅴ)在HTiO2表面的最大吸附量分别为0.407、0.861、0.197、0.181 mmol·g-1.砷、锑在HTiO2表面的吸附动力学符合拟二级动力学方程,说明化学吸附是控制吸附速率的关键因素.pH边共吸附实验表明,HTiO2对As(Ⅲ)的吸附基本不受pH的影响;对Sb(Ⅲ)的吸附随pH的升高先增大后减小;对As(Ⅴ)和Sb(Ⅴ)的吸附随pH的升高逐渐降低.Zeta电位结果表明,砷锑吸附后HTiO2表面带负电,说明砷、锑在HTiO2表面形成带负电的稳定内层配合物.本研究为水体中砷锑的共吸附去除提供了新信息.

English Abstract

参考文献 (26)

目录

/

返回文章
返回