C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能

杨开, 徐云兰, 钟登杰. C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能[J]. 环境化学, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
引用本文: 杨开, 徐云兰, 钟登杰. C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能[J]. 环境化学, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
YANG Kai, XU Yunlan, ZHONG Dengjie. Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell[J]. Environmental Chemistry, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
Citation: YANG Kai, XU Yunlan, ZHONG Dengjie. Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell[J]. Environmental Chemistry, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302

C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能

  • 基金项目:

    重庆理工大学研究生创新基金(YCX2016243)资助.

Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell

  • Fund Project: Supported by the Graduate Innovation Foundation of Chongqing University of Technology(YCX2016243).
  • 摘要: 采用溶胶-凝胶法制备了C-TiO2/Ti膜电极,其X-射线衍射(XRD)结果表明,C掺杂有效抑制了TiO2催化剂由锐钛矿相向金红石相的转变.以C-TiO2/Ti作为光催化燃料电池(PFC)的阳极,Cu2O/Cu为阴极,考察了C-TiO2/Ti的制备条件和染料初始浓度及pH值对PFC性能的影响,得到PFC的最佳性能:短路电流密度为0.084 mA·cm-2,开路电压为0.385 V,最大输出功率密度为5.91×10-3 mW·cm-2,填充因子(FF)为0.18,光催化处理20 mg·L-1罗丹明B染料废水90 min,脱色率达到91.7%.处理过程中罗丹明B溶液的紫外-可见分光光谱表明,可见光区最大吸收波长略有蓝移,可见和紫外光区的光吸收均下降,说明分子遭到了破坏,并发生了矿化.
  • 加载中
  • [1] 许颖蘅, 应迪文, 江璇,等. 光催化燃料电池不同二氧化钛光阳极性能的对比[J]. 环境化学, 2016, 35(1):82-88.

    XU Y H, YING D W, JIANG X, et al. Comparison of different TiO2 photoanodes in photocatalytic fuel cells[J]. Environmental Chemistry, 2016, 35(1):82-88(in Chinese).

    [2] LI K, XU Y, HE Y, et al. Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation[J]. Environmental Science & Technology, 2013, 47(7):3490-3497.
    [3] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271.
    [4] KANEKO M, NEMOTO J, UENO H, et al. Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2- reducing cathode[J]. Electrochemistry Communications, 2006, 8(2):336-340.
    [5] XUE L M, ZHANG F H, FAN H J, et al. Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide[J]. Advanced Materials Research, 2011, 183-185:1842-1846.
    [6] HUANG B, YU D, SHENG Z, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Environmental Sciences, 2017, 55(5):129-136.
    [7] LYU S C, ZHANG Y, RUH H, et al. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires[J]. Chemical Physics Letters,2002,363(1):134-138.
    [8] YE J D, GU S L, QIN F,et al. MOCVD growth and properties of ZnO films using dimethylzinc and oxygen[J]. Applied Physics A, 2005, 81(4):809-812.
    [9] 徐云兰, 钟登杰, 贾金平.斜板液膜反应器光电催化降解罗丹明B[J].工业水处理, 2012,32(4):21-24.

    XU Y L, ZHONG D J, JIA J P. Photoelectrocatalytic degradation of rhodamine B with the slant-placed TiO2/Ti anode thin-film reactor[J]. Industrial Water Treatment, 2012,32(4):21-24(in Chinese).

    [10] LI J Y, LI J H, CHEN Q P, et al. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell[J]. Journal of Hazardous Materials, 2013, 262(262C):304-310.
    [11] 武小满, 苗玉琪. 碳掺杂对TiO2晶相及光催化活性的影响[J]. 化工新型材料, 2015,43(6):130-132.

    WU X M, MIAO Y Q. Photocatalytic activity and crystal phase of C-doped TiO2[J].New Chemical Materials, 2015,43(6):130-132(in Chinese).

    [12] 张芬,王炜亮,李平.水处理光催化剂TiO2掺杂改性研究进展[J].生物质化学工程, 2011, 55(4):32-38.

    ZHANG F, WANG W L, LI P. Advance in doping modifications of titanium dioxide photocatalyst for water treatment[J].Biomass Chemical Engineering, 2011, 55(4):32-38(in Chinese).

    [13] CHEN M, CHU W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis[J]. Journal of Hazardous Materials, 2012, s219-220(6):183-189.
    [14] 孙秀云, 段传玲, 李欣,等. 焙烧温度对N掺杂TiO2催化剂催化性能的影响[J]. 环境化学, 2007, 26(6):787-791.

    SUN X Y, DUAN C L, LI X, et al. Effect of calcined temperature on photocatalystic activity of N-doped TiO2 photocatalyst[J]. Environmental Chemistry, 2007, 26(6):787-791(in Chinese).

    [15] LIU Y B, LI J H, ZHOU B X, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J]. Water Research,2011,45(13):3991-3998.
    [16] 刘惠玲,周定,李湘中,等.网状Ti/TiO2电极光电催化氧化若丹明B[J].环境科学,2002,23(4):264-270.

    LIU H L, ZHOU D, LI X Z, et al. Photoelectrocatalytic degradation of rhodamine B using mesh Ti/TiO2 electrode[J].Environmental Science,2002,23(4):264-270(in Chinese).

    [17] WATANABE T, TAKIZAWA T, Honda K. Photocatalysis through excitation of adsorbates.1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide[J]. Journal of Physical Chemistry, 1977, 81(19):1845-1851.
    [18] WU T X, LIU G M, ZHAO J C, et al. Photoassisted degradation of dye pollutants.V.Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. Journal of Physical Chemistry B, 1998, 102(30):5845-5851.
  • 加载中
计量
  • 文章访问数:  1068
  • HTML全文浏览数:  987
  • PDF下载数:  355
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-13
  • 刊出日期:  2018-01-15
杨开, 徐云兰, 钟登杰. C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能[J]. 环境化学, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
引用本文: 杨开, 徐云兰, 钟登杰. C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能[J]. 环境化学, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
YANG Kai, XU Yunlan, ZHONG Dengjie. Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell[J]. Environmental Chemistry, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302
Citation: YANG Kai, XU Yunlan, ZHONG Dengjie. Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell[J]. Environmental Chemistry, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302

C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能

  • 1. 重庆理工大学化学化工学院, 重庆, 400054
基金项目:

重庆理工大学研究生创新基金(YCX2016243)资助.

摘要: 采用溶胶-凝胶法制备了C-TiO2/Ti膜电极,其X-射线衍射(XRD)结果表明,C掺杂有效抑制了TiO2催化剂由锐钛矿相向金红石相的转变.以C-TiO2/Ti作为光催化燃料电池(PFC)的阳极,Cu2O/Cu为阴极,考察了C-TiO2/Ti的制备条件和染料初始浓度及pH值对PFC性能的影响,得到PFC的最佳性能:短路电流密度为0.084 mA·cm-2,开路电压为0.385 V,最大输出功率密度为5.91×10-3 mW·cm-2,填充因子(FF)为0.18,光催化处理20 mg·L-1罗丹明B染料废水90 min,脱色率达到91.7%.处理过程中罗丹明B溶液的紫外-可见分光光谱表明,可见光区最大吸收波长略有蓝移,可见和紫外光区的光吸收均下降,说明分子遭到了破坏,并发生了矿化.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回