C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能
Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell
-
摘要: 采用溶胶-凝胶法制备了C-TiO2/Ti膜电极,其X-射线衍射(XRD)结果表明,C掺杂有效抑制了TiO2催化剂由锐钛矿相向金红石相的转变.以C-TiO2/Ti作为光催化燃料电池(PFC)的阳极,Cu2O/Cu为阴极,考察了C-TiO2/Ti的制备条件和染料初始浓度及pH值对PFC性能的影响,得到PFC的最佳性能:短路电流密度为0.084 mA·cm-2,开路电压为0.385 V,最大输出功率密度为5.91×10-3 mW·cm-2,填充因子(FF)为0.18,光催化处理20 mg·L-1罗丹明B染料废水90 min,脱色率达到91.7%.处理过程中罗丹明B溶液的紫外-可见分光光谱表明,可见光区最大吸收波长略有蓝移,可见和紫外光区的光吸收均下降,说明分子遭到了破坏,并发生了矿化.Abstract: C-doped TiO2/Ti thin film electrodes were prepared by sol-gel method.The results of XRD spectroscopy indicated that carbon doping effectively inhibited the change of TiO2 crystal phase from anatase to rutile.The influences of preparation conditions,dye initial concentration and pH on the performance of the photocatalytic fuel cell (PFC),which used the C-TiO2/Ti as photoanode and Cu2O/Cu as cathode,were investigated.The optimum performance of PFC:short-circuit current density was 0.084 mA·cm-2,open-circuit voltage was 0.385 V,maximum output power density was 5.91×10-3 mW·cm-2,fill factor (FF) was 0.18,and the decolorization efficiency of 20 mg·L-1 Rhodamine B for 90 min treatment was 91.7%.The result of the UV-Vis abosrption spectroscopic measurement of Rhodamine B solution during the treatment process showed that the maximum absorption wavelength blue shifted slightly in the visible region,and the absorbance decreased both in the visible and ultraviolet region, indicating the Rhodamine B molecules were decomposed.
-
Key words:
- photocatalytic fuel cell /
- C doped TiO2/Ti /
- visible light /
- Rhodamine B
-
-
[1] 许颖蘅, 应迪文, 江璇,等. 光催化燃料电池不同二氧化钛光阳极性能的对比[J]. 环境化学, 2016, 35(1):82-88. XU Y H, YING D W, JIANG X, et al. Comparison of different TiO2 photoanodes in photocatalytic fuel cells[J]. Environmental Chemistry, 2016, 35(1):82-88(in Chinese).
[2] LI K, XU Y, HE Y, et al. Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation[J]. Environmental Science & Technology, 2013, 47(7):3490-3497. [3] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271. [4] KANEKO M, NEMOTO J, UENO H, et al. Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2- reducing cathode[J]. Electrochemistry Communications, 2006, 8(2):336-340. [5] XUE L M, ZHANG F H, FAN H J, et al. Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide[J]. Advanced Materials Research, 2011, 183-185:1842-1846. [6] HUANG B, YU D, SHENG Z, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Environmental Sciences, 2017, 55(5):129-136. [7] LYU S C, ZHANG Y, RUH H, et al. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires[J]. Chemical Physics Letters,2002,363(1):134-138. [8] YE J D, GU S L, QIN F,et al. MOCVD growth and properties of ZnO films using dimethylzinc and oxygen[J]. Applied Physics A, 2005, 81(4):809-812. [9] 徐云兰, 钟登杰, 贾金平.斜板液膜反应器光电催化降解罗丹明B[J].工业水处理, 2012,32(4):21-24. XU Y L, ZHONG D J, JIA J P. Photoelectrocatalytic degradation of rhodamine B with the slant-placed TiO2/Ti anode thin-film reactor[J]. Industrial Water Treatment, 2012,32(4):21-24(in Chinese).
[10] LI J Y, LI J H, CHEN Q P, et al. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell[J]. Journal of Hazardous Materials, 2013, 262(262C):304-310. [11] 武小满, 苗玉琪. 碳掺杂对TiO2晶相及光催化活性的影响[J]. 化工新型材料, 2015,43(6):130-132. WU X M, MIAO Y Q. Photocatalytic activity and crystal phase of C-doped TiO2[J].New Chemical Materials, 2015,43(6):130-132(in Chinese).
[12] 张芬,王炜亮,李平.水处理光催化剂TiO2掺杂改性研究进展[J].生物质化学工程, 2011, 55(4):32-38. ZHANG F, WANG W L, LI P. Advance in doping modifications of titanium dioxide photocatalyst for water treatment[J].Biomass Chemical Engineering, 2011, 55(4):32-38(in Chinese).
[13] CHEN M, CHU W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis[J]. Journal of Hazardous Materials, 2012, s219-220(6):183-189. [14] 孙秀云, 段传玲, 李欣,等. 焙烧温度对N掺杂TiO2催化剂催化性能的影响[J]. 环境化学, 2007, 26(6):787-791. SUN X Y, DUAN C L, LI X, et al. Effect of calcined temperature on photocatalystic activity of N-doped TiO2 photocatalyst[J]. Environmental Chemistry, 2007, 26(6):787-791(in Chinese).
[15] LIU Y B, LI J H, ZHOU B X, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J]. Water Research,2011,45(13):3991-3998. [16] 刘惠玲,周定,李湘中,等.网状Ti/TiO2电极光电催化氧化若丹明B[J].环境科学,2002,23(4):264-270. LIU H L, ZHOU D, LI X Z, et al. Photoelectrocatalytic degradation of rhodamine B using mesh Ti/TiO2 electrode[J].Environmental Science,2002,23(4):264-270(in Chinese).
[17] WATANABE T, TAKIZAWA T, Honda K. Photocatalysis through excitation of adsorbates.1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide[J]. Journal of Physical Chemistry, 1977, 81(19):1845-1851. [18] WU T X, LIU G M, ZHAO J C, et al. Photoassisted degradation of dye pollutants.V.Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. Journal of Physical Chemistry B, 1998, 102(30):5845-5851. -

计量
- 文章访问数: 1068
- HTML全文浏览数: 987
- PDF下载数: 355
- 施引文献: 0