磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律

杨腾飞, 张小寒, 黄铄淇, 许艺凡, 莫耀钧, 招思丽, 任源. 磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律[J]. 环境化学, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
引用本文: 杨腾飞, 张小寒, 黄铄淇, 许艺凡, 莫耀钧, 招思丽, 任源. 磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律[J]. 环境化学, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
YANG Tengfei, ZHANG Xiaohan, HUANG Shuoqi, XU Yifan, MO Yaojun, ZHAO Sili, REN Yuan. Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal[J]. Environmental Chemistry, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
Citation: YANG Tengfei, ZHANG Xiaohan, HUANG Shuoqi, XU Yifan, MO Yaojun, ZHAO Sili, REN Yuan. Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal[J]. Environmental Chemistry, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305

磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律

  • 基金项目:

    广州市科技计划项目(201707010158)资助.

Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal

  • Fund Project: Supported by Guangzhou Science and Technology Plan Projects (201707010158).
  • 摘要: 近年来,滥用抗生素对环境和人类健康的潜在危害引起了广泛的关注.生物脱氮是废水处理系统中的重要组成部分,抗生素的大量存在影响了水中含氮污染物的高效去除.本文以磺胺甲恶唑(SMX)和甲氧苄啶(TMP)为例,探究了这两种抗生素单独作用和混合存在时对生物脱氮的影响,以及脱氮过程中抗生素自身的降解情况.结果显示,在硝化过程中,暴露48 h的条件下,TMP和SMX对硝化过程的抑制作用随其浓度的增大而增强,并且TMP和SMX混合作用时对硝化过程的抑制比单独作用时明显增强,SMX和TMP分别单独作用和混合存在时,对污泥的氨氧化最大抑制率分别为42.1%、55.2%和64.0%.在反硝化过程中,TMP通过影响硝态氮还原为亚硝态氮的过程,对反硝化产生明显的抑制作用.此外,在脱氮过程中,SMX和TMP自身会被微生物降解,在硝化过程中SMX比TMP更容易被降解,而在反硝化过程中TMP比SMX更容易被降解.
  • 加载中
  • [1] 章强,辛琦,朱静敏,等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学,2014,33(7):1075-1083.

    ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J].Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).

    [2] LALUMERA G M, CALAMARI D, GALLI P, et al. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy[J]. Chemosphere, 2004, 54(5):661-668.
    [3] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1):1-13.
    [4] CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture:A growing problem for human and animal health and for the environment[J]. Environmental Microbiology, 2006, 8(7):1137-1144.
    [5] 姜蕾,陈书怡,杨蓉,等. 长江三角洲地区典型废水中抗生素的初步分析[J]. 环境化学,2008,27(3):371-374.

    JIANG L, CHEN S Y, YANG R, et al. Occurrence of antibiotics in the aquatic environment of the chang jiang delta, China[J].Environmental Chemistry, 2008, 27(3):371-374(in Chinese).

    [6] LIU W, PAN N, CHEN W, et al. Effect of veterinary oxytetracycline on functional diversity of soil microbial community[J]. Plant Soil and Environment, 2012, 58(7):295-301.
    [7] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments:A review of the European scenario[J]. Environment International, 2016, 94:736-757.
    [8] VAN BOECKEL T P, GANDRA S, ASHOK A, et al. Global antibiotic consumption 2000 to 2010:An analysis of cross mark 742 national pharmaceutical sales data[J]. Lancet Infectious Diseases, 2014, 14(8):742-750.
    [9] 杨程. 城市水系統中PPCPs分布及污水处理优化研究[D]. 重庆:重庆大学, 2014. YANG C. Investigation of PPCPs in civil water cycle system and study on optimization of wastewater treatment on PPCPs[D]. Chongqing:Chongqing University,2014(in Chinese).
    [10] ZHANG Q, YING G, PAN C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
    [11] 柯润辉,蒋愉林,黄清辉,等. 上海某城市污水处理厂污水中药物类个人护理用品(PPCPs)的调查研究[J]. 生态毒理学报,2014, 9(6):1146-1155.

    KE R H, JANG Y L, HUANG Q H, et al. Investigative screening of pharmaceuticals in a municipal wastewater treatment plant in Shanghai[J]. Asian Journal of Ecotoxicology,2014, 9(6):1146-1155(in Chinese).

    [12] 赵高峰,杨林,周怀东,等. 北京某污水处理厂出水中药物和个人护理品的污染现状[J]. 中国环境监测,2011,27(S1):63-67.

    ZHAO G F, YANG L, ZHOU H D, et al. Pollution status of pharmaceuticals and personal care productions in a certain sewage plant in Beijing[J]. Environmental Monitoring in China, 2011,27(S1):63-67(in Chinese).

    [13] SCHMIDT S, WINTER J, GALLERT C. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants[J]. Archives of Environmental Contamination and Toxicology, 2012, 63(3):354-364.
    [14] NÖDLER K, LICHA T, BARBIERI M, et al. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification[J]. Water Research, 2012, 46(7):2131-2139.
    [15] BARBER L B, KEEFE S H, LEBLANC D R, et al. Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in groundwater contaminated by wastewater treatment plant effluent[J]. Environmental Science & Technology, 2009, 43(13):4843-4850.
    [16] KATIPOGLU-YAZAN T, MERLIN C, PONS M, et al. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture[J]. Water Research, 2016, 100:546-555.
    [17] HUANG X, FENG Y, HU C, et al. Mechanistic model for interpreting the toxic effects of sulfonamides on nitrification[J]. Journal of Hazardous Materials, 2016, 305:123-129.
    [18] AHMAD M, VITHANAGE M, KIM K, et al. Inhibitory effect of veterinary antibiotics on denitrification in groundwater:A microcosm approach[J]. Scientific World Journal, 2014(3):879831.
    [19] 陈瑞萍,张丽,于洁,等. 活性污泥对四环素的吸附性能研究[J]. 环境科学. 2012,33(1):156-162.

    CHEN R P, ZHANG L, YU J, et al. Study on the sorption behavior of tetracycline onto activated sludge[J]. Environmental Science, 2012(1):156-162(in Chinese).

    [20] 谢道海. 微生物电化学耦联驱动下高氯酸盐及硝酸盐厌氧还原研究[D]. 广州:华南理工大学, 2014. XIE D H. Electric field-stimulated anaerobic reduction of perchlorate and nitrate[D].Guangzhou:South China University of Technology, 2014(in Chinese).
    [21] KATIPOGLU -YAZAN T, PALA-OZKOK I, UBAY-COKGOR E, et al. Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture[J]. Bioresource Technology, 2013, 144:410-419.
    [22] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9):3468-3473.
    [23] NIELSEN L, BANDOSZ T J. Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents[J]. Microporous and Mesoporous Materials, 2016, 220:58-72.
  • 加载中
计量
  • 文章访问数:  2160
  • HTML全文浏览数:  2103
  • PDF下载数:  299
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-13
  • 刊出日期:  2018-03-15
杨腾飞, 张小寒, 黄铄淇, 许艺凡, 莫耀钧, 招思丽, 任源. 磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律[J]. 环境化学, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
引用本文: 杨腾飞, 张小寒, 黄铄淇, 许艺凡, 莫耀钧, 招思丽, 任源. 磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律[J]. 环境化学, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
YANG Tengfei, ZHANG Xiaohan, HUANG Shuoqi, XU Yifan, MO Yaojun, ZHAO Sili, REN Yuan. Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal[J]. Environmental Chemistry, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305
Citation: YANG Tengfei, ZHANG Xiaohan, HUANG Shuoqi, XU Yifan, MO Yaojun, ZHAO Sili, REN Yuan. Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal[J]. Environmental Chemistry, 2018, 37(3): 471-479. doi: 10.7524/j.issn.0254-6108.2017071305

磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律

  • 1.  华南理工大学环境与能源学院, 广州, 510006;
  • 2.  工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006;
  • 3.  污染控制与生态修复广东省普通高等学校重点实验室, 广州, 510006
基金项目:

广州市科技计划项目(201707010158)资助.

摘要: 近年来,滥用抗生素对环境和人类健康的潜在危害引起了广泛的关注.生物脱氮是废水处理系统中的重要组成部分,抗生素的大量存在影响了水中含氮污染物的高效去除.本文以磺胺甲恶唑(SMX)和甲氧苄啶(TMP)为例,探究了这两种抗生素单独作用和混合存在时对生物脱氮的影响,以及脱氮过程中抗生素自身的降解情况.结果显示,在硝化过程中,暴露48 h的条件下,TMP和SMX对硝化过程的抑制作用随其浓度的增大而增强,并且TMP和SMX混合作用时对硝化过程的抑制比单独作用时明显增强,SMX和TMP分别单独作用和混合存在时,对污泥的氨氧化最大抑制率分别为42.1%、55.2%和64.0%.在反硝化过程中,TMP通过影响硝态氮还原为亚硝态氮的过程,对反硝化产生明显的抑制作用.此外,在脱氮过程中,SMX和TMP自身会被微生物降解,在硝化过程中SMX比TMP更容易被降解,而在反硝化过程中TMP比SMX更容易被降解.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回