纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应

章哲超, 胡佶, 刘淑霞, 张偲, 刘小涯, 叶陈军, 潘建明. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
引用本文: 章哲超, 胡佶, 刘淑霞, 张偲, 刘小涯, 叶陈军, 潘建明. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
ZHANG Zhechao, HU Ji, LIU Shuxia, ZHANG Cai, LIU Xiaoya, YE Chenjun, PAN Jianming. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
Citation: ZHANG Zhechao, HU Ji, LIU Shuxia, ZHANG Cai, LIU Xiaoya, YE Chenjun, PAN Jianming. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506

纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应

  • 基金项目:

    国家自然科学基金青年基金(21307019),海洋公益性行业科研专项(201505034),国家重点研发计划重点专项(2016YFC1402405)和青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室开放课题(2016LMFS-B19)资助.

Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum

  • Fund Project: Supported by the National Natural Science Foundation of China (21307019), the Public Science and Technology Research Funds Projects of Ocean(201505034), the National Key Research and Development Program(2016YFC1402405) and Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology (2016LMFS-B19).
  • 摘要: 随着纳米材料在日常生产生活中的广泛应用,部分纳米颗粒物不可避免地会通过废弃物排放等途径进入海洋.当纳米颗粒物与海洋中的污染物(如与重金属)共存时,因其独特的物化特性往往会成为污染物的良好载体并在生物体内累积,从而增加已有污染物和生物的相互作用,对海洋环境构成潜在的生态风险.已有的研究更多关注单一纳米材料的生态毒性效应,有关纳米颗粒物与污染物的复合生物效应的研究较少.因此,本文研究了已广泛应用的纳米SiO2与常见的重金属污染物Hg2+对东海常见海洋微藻-中肋骨条藻(Skeletonema costatum)的联合毒性效应.结果表明,Hg2+会抑制中肋骨条藻的生长,24 h-EC50、48 h-EC50和72 h-EC50值分别为56.3 μg·L-1、58.6 μg·L-1和36.8 μg·L-1;低浓度的纳米SiO2(1 mg·L-1和5 mg·L-1)未对中肋骨条藻的生长产生抑制作用,而较高浓度的纳米SiO2(≥ 10 mg·L-1)会显著(P-1纳米SiO2会增强Hg2+对中肋骨条藻的生长抑制作用,Hg2+的24 h-EC50和48 h-EC50分别下降至41 μg·L-1和43 μg·L-1,虽然1 mg·L-1纳米SiO2本身没有对中肋骨条藻产生生长抑制作用,但是能够明显增强Hg2+对中肋骨条藻的毒性.纳米SiO2对Hg2+有着较强的吸附能力,在60 min时,100 mg·L-1纳米SiO2对100 μg·L-1的Hg2+的吸附率为90.08%,最大吸附量为5.92 mg·g-1.吸附了Hg2+的纳米SiO2在中肋骨条藻内的累积可能是造成这种协同毒性的主要原因.
  • [1] 张密林, 丁立国, 景晓燕, 等. 纳米二氧化硅的制备、改性与应用研究进展[J]. 应用科技, 2004, 31(6):64-66.

    ZHANG M L, DING L G, JING X Y, et al. Preparation,modification and application of nanoscale SiO2[J]. Applied Science and Technology.2004,31(6):64-66(in Chinese).

    [2] 张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000, 11(3):42-48.

    ZHANG Z T, LIN Y H, TANG Z L, et al. Nanometer materials&nanotechology and their application prospect[J]. Materials Engineering. 2000, (3):42-48(in Chinese).

    [3] 杨柳燕, 姚莹, 陈军, 等. 纳米材料的环境风险评估及相关环境标准的建议[C]. 中国环境科学学会环境标准与基准专业委员会2010年学术研讨会, 2010. YANG L Y, YAO Y, CHEN J, et al. Environmental risk assessment on nano-materials and Proposal for Enviromental quality standard[C]. Environmental standards and benchmarks professional committee of Chinese Society For Environmental Sciences for academic seminar in 2010,2010(in Chinese).
    [4] 张立德, 牟季美.纳米材料和纳米结构[M]. 北京:科学出版社, 2017. ZHANG L D, MOU J M. Nano materials and nano structure[M]. Beijing:Science Press, 2017(in Chinese).
    [5] 王永康, 王立. 纳米材料科学与技术[M]. 杭州:浙江大学出版社, 2002:1-2. WANG Y K, WANG L. Nanometer material Science and Technology[M]. Hangzhou:Zhejiang University Press, 2002:1

    -2(in Chinese).

    [6] NEL A, XIA T, MDLER L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627.
    [7] 玉晓微, 赵占克, 韩冰, 等. 纳米二氧化硅对斑马鱼胚胎发育毒性的初步研究[J]. 生态毒理学报, 2009, 4(5):675-681.

    YU X W, ZHAO Z K, HAN B, et al. Preliminary study on the toxicity of nanosized silicon dioxide on embryonic development of Zebrafish embryos[J]. Asian Journal of Ecotoxicology, 2009, 4(5):675-681(in Chinese).

    [8] 杨尚悦. 纳米二氧化硅和常规二氧化硅的水生态毒性初步研究[D]. 武汉:华中师范大学, 2015. YANG S Y. The preliminary study of nano-silicon dioxide and normal sized silicon dioxide on aquatic ecotoxicology[D]. Wuhan:Central China Normal University, 2015(in Chinese).
    [9] 孔璐, 张婷, 王大勇, 等. 纳米二氧化硅对秀丽线虫的毒性作用研究[J]. 生态毒理学报, 2011, 6(6):655-660.

    KONG L, ZHANG T, WANG D Y, et al. Toxicity of SiO2 nanoparticles to Caenorhabditis Elegans[J]. Asian Journal of Ecotoxicology, 2011, 6(6):655-660(in Chinese).

    [10] YANG W W, LI Y, MIAO A J, et al. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart[J]. Ecotoxicology & Environmental Safety, 2012, 85(3):44-47.
    [11] FANG L, BORGGAARD O K, HOLM P E, et al. Toxicity and uptake of Tri-and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal[J]. Environmental Toxicology & Chemistry, 2011, 30(11):2553-2561.
    [12] CAMPOS-GARCIA J, MARTINEZ D S T, ALVES O L, et al. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia:Nanotubes enhance pesticide ecotoxicity[J]. Ecotoxicol Environ Saf, 2015, 111(111):131-137.
    [13] VENKATACHALAM P, JAYARAJ M, MANIKANDAN R, et al. Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings:A physiochemical analysis[J]. Plant Physiology & Biochemistry, 2016, 110:59-63.
    [14] LI X, ZHOU S, FAN W. Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards scenedesmus obliquus[J]. International Journal of Environmental Research & Public Health, 2016, 13(6):575-577
    [15] 刘成, 王兆印, 何耘, 等. 环渤海湾诸河口潜在生态风险评价[J]. 环境科学研究, 2002, 15(5):33-37.

    LIU C, WANG Z Y, HE Y, et al. Evalution on the potential ecological risk for the river mouths around bohai bay[J]. Research of Enviromental Sciences, 2002, 15(5):33-37(in Chinese).

    [16] SUNDA W G. Trace metal interactions with marine phytoplankton[J]. Biological Oceanography, 1988, 6(5-6):411-442.
    [17] 胡金朝,郑爱珍.重金属胁迫对植物细胞超微结构的损伤[J].商丘师范学院学报,2005,21(5):132-134.

    JIN-ZHAO H U, ZHENG A Z. The damage of heavy metal stress on plant cell ultrastructure[J]. Journal of Shangqiu Teachers College, 2005, 21(5):132-134(in Chinese).

    [18] 李冲杰, 綦晓青, 安美玲, 等. Hg2+对南极冰藻ChlorophyceaeL-4生长和抗氧化系统的影响及藻体富集Hg2+的规律[J]. 微生物学通报, 2015, 42(1):24-33.

    LI C J, QI X Q, AN M L, et al. Influence of Hg2+ on the growth and the antioxidant system ofan Antarcticalgae Chlorophyceae L-4 and the feature of itsaccumulating Hg2+[J]. Microbiology China, 2015, 42(1):24-33(in Chinese).

    [19] 战玉杰, 杨茹君, 王修林, 等. Hg(Ⅱ)和Pb(Ⅱ)对海洋单细胞藻的急性毒性效应[J]. 生态毒理学报, 2011, 06(5):523-531.

    ZHAN Y J, YANG R J, WANG X L, et al. Acute toxic effect of Hg(Ⅱ) and Pb(Ⅱ) on marine unicellular algae[J]. Asian Journal of Ecotoxicology, 2011, 6(5):523-531(in Chinese).

    [20] 马春宇. 纳米二氧化硅和氧化锌在海水中的物化行为及致毒效应[D]. 厦门.厦门大学, 2013. MA C Y. The physical and chemical behaviour of nano-SiO2 and nano-ZnO, and their toxic effect[D]. Xiamen:Xiamen university, 2013(in Chinese).
    [21] CHANG J S, CHANG K L, HWANG D F, et al. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line[J]. Environmental Science & Technology, 2007, 41(6):2064-2068.
    [22] ALSHARIF N H, BERGER C E M, VARANASI S S, et al. Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis[J]. Small, 2009, 5(2):221-225
    [23] 王萌, 刘珊珊, 龙奕, 等. 沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响[J]. 环境科学学报, 2015, 35(12):4150-4158

    WANG M, LIU S S, LONG Y. et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4150-4158(in Chinese).

    [24] LIU S, JIANG W, WU B, et al. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters[J]. Nanotoxicology, 2016, 10(5):597-599.
    [25] 吴明珠, 何梅琳, 邹山梅, et al. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267.

    WU M Z, HE M L, ZOU S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus musobliquus[J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese).

    [26] YANG W W, MIAO A J, YANG L Y. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles[J]. Plos One, 2012, 7(3):e32300.
    [27] LAMELAS C, PINHEIRO J P, SLAVEYKOVA V I. Effect of humic acid on Cd(Ⅱ), Cu(Ⅱ), and Pb(Ⅱ) uptake by freshwater algae:Kinetic and cell wall speciation considerations[J]. Environmental Science & Technology, 2009, 43(3):730-735.
    [28] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8):925-932.
    [29] 崔洪梅, 刘宏, 王继扬, 等. 纳米粉体的团聚与分散[J]. 机械工程材料, 2004, 28(8):38-41.

    CUI H M, LIU H, WANG J Y, et al. Allomeration and disperasion of nana-scale powders[J]. Materials for Mechanical Engineering, 2004, 28(8):38-41(in Chinese).

    [30]
    [31] WONG S W Y, LEUNG P T Y, DJURIŠIC' A B, et al. Toxicities of nano zinc oxide to five marine organisms:Influences of aggregate size and ion solubility[J]. Analytical & Bioanalytical Chemistry, 2010, 396(2):609-618.
    [32] ZHANG C, WANG J, TAN L, et al. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum:Attention to the accumulation of intracellular Zn[J]. Aquatic Toxicology, 2016, 178:158-164.
    [33] YANG W W, WANG Y, HUANG B, et al. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila[J]. Environmental Science & Technology, 2014, 48(13):7568-7570.
  • 期刊类型引用(6)

    1. 艾晓寒,夏亦雪,许萍萍,涂晓杰,毕永红. 雪衣藻叶绿素荧光特性及抗氧化系统对汞胁迫的响应. 水生生物学报. 2024(05): 753-761 . 百度学术
    2. 何涛,潘雪梅,陈金城,王亲媛,章萍. 三维镁铝层状双金属氢氧化物对微藻的毒性影响及致毒机制. 环境化学. 2023(10): 3546-3557 . 本站查看
    3. 艾晓寒,涂晓杰,许萍萍,夏亦雪,毕永红. 汞胁迫下雪衣藻的生理活性及其藻源性有机物分析. 生态毒理学报. 2023(06): 245-256 . 百度学术
    4. 史天一,洪海征,王明华,谭巧国,史大林. 中国海洋生态毒理学研究中的毒性测试生物. 环境科学. 2022(11): 4888-4904 . 百度学术
    5. 纪丽鹏,王月,褚福浩,黄一,鲁浩,朱亮,徐向阳,李家科,莫淑红,孔赟. 纳米材料对微藻的生态毒性效应及机理. 生态毒理学报. 2022(05): 175-189 . 百度学术
    6. 李准,李旋坤,孙雯,徐瑜阳,李春娥. 海藻酸钠修饰对纳米SiO_2在水中团聚行为的影响及机制. 山东化工. 2020(12): 39-41 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 7.6 %DOWNLOAD: 7.6 %FULLTEXT: 90.3 %FULLTEXT: 90.3 %META: 2.2 %META: 2.2 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 84.8 %其他: 84.8 %Ashburn: 0.7 %Ashburn: 0.7 %Beijing: 7.2 %Beijing: 7.2 %Gaocheng: 0.4 %Gaocheng: 0.4 %Hangzhou: 0.4 %Hangzhou: 0.4 %Mountain View: 0.4 %Mountain View: 0.4 %Newark: 1.1 %Newark: 1.1 %Shanghai: 0.4 %Shanghai: 0.4 %Shifang: 0.7 %Shifang: 0.7 %Shijiazhuang: 0.4 %Shijiazhuang: 0.4 %The Bronx: 0.7 %The Bronx: 0.7 %XX: 1.4 %XX: 1.4 %北京: 0.4 %北京: 0.4 %沈阳: 0.4 %沈阳: 0.4 %深圳: 0.4 %深圳: 0.4 %阳泉: 0.4 %阳泉: 0.4 %其他AshburnBeijingGaochengHangzhouMountain ViewNewarkShanghaiShifangShijiazhuangThe BronxXX北京沈阳深圳阳泉Highcharts.com
计量
  • 文章访问数:  1670
  • HTML全文浏览数:  1611
  • PDF下载数:  317
  • 施引文献:  9
出版历程
  • 收稿日期:  2017-08-15
  • 刊出日期:  2018-04-15
章哲超, 胡佶, 刘淑霞, 张偲, 刘小涯, 叶陈军, 潘建明. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
引用本文: 章哲超, 胡佶, 刘淑霞, 张偲, 刘小涯, 叶陈军, 潘建明. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
ZHANG Zhechao, HU Ji, LIU Shuxia, ZHANG Cai, LIU Xiaoya, YE Chenjun, PAN Jianming. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506
Citation: ZHANG Zhechao, HU Ji, LIU Shuxia, ZHANG Cai, LIU Xiaoya, YE Chenjun, PAN Jianming. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506

纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应

  • 1.  国家海洋局第二海洋研究所, 国家海洋局海洋生态系统与生物地球化学重点实验室, 杭州, 310012;
  • 2.  青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 青岛, 266071
基金项目:

国家自然科学基金青年基金(21307019),海洋公益性行业科研专项(201505034),国家重点研发计划重点专项(2016YFC1402405)和青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室开放课题(2016LMFS-B19)资助.

摘要: 随着纳米材料在日常生产生活中的广泛应用,部分纳米颗粒物不可避免地会通过废弃物排放等途径进入海洋.当纳米颗粒物与海洋中的污染物(如与重金属)共存时,因其独特的物化特性往往会成为污染物的良好载体并在生物体内累积,从而增加已有污染物和生物的相互作用,对海洋环境构成潜在的生态风险.已有的研究更多关注单一纳米材料的生态毒性效应,有关纳米颗粒物与污染物的复合生物效应的研究较少.因此,本文研究了已广泛应用的纳米SiO2与常见的重金属污染物Hg2+对东海常见海洋微藻-中肋骨条藻(Skeletonema costatum)的联合毒性效应.结果表明,Hg2+会抑制中肋骨条藻的生长,24 h-EC50、48 h-EC50和72 h-EC50值分别为56.3 μg·L-1、58.6 μg·L-1和36.8 μg·L-1;低浓度的纳米SiO2(1 mg·L-1和5 mg·L-1)未对中肋骨条藻的生长产生抑制作用,而较高浓度的纳米SiO2(≥ 10 mg·L-1)会显著(P-1纳米SiO2会增强Hg2+对中肋骨条藻的生长抑制作用,Hg2+的24 h-EC50和48 h-EC50分别下降至41 μg·L-1和43 μg·L-1,虽然1 mg·L-1纳米SiO2本身没有对中肋骨条藻产生生长抑制作用,但是能够明显增强Hg2+对中肋骨条藻的毒性.纳米SiO2对Hg2+有着较强的吸附能力,在60 min时,100 mg·L-1纳米SiO2对100 μg·L-1的Hg2+的吸附率为90.08%,最大吸附量为5.92 mg·g-1.吸附了Hg2+的纳米SiO2在中肋骨条藻内的累积可能是造成这种协同毒性的主要原因.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回