绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响

许生辉, 南忠仁, 王胜利, 胡亚虎, 武文飞, 赵转军, 王兆炜. 绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响[J]. 环境化学, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
引用本文: 许生辉, 南忠仁, 王胜利, 胡亚虎, 武文飞, 赵转军, 王兆炜. 绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响[J]. 环境化学, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
XU Shenghui, NAN Zhongren, WANG Shengli, HU Yahu, WU Wenfei, ZHAO Zhuanjun, WANG Zhaowei. Effects of Cd-Ni combined pollution on the growth and absorption of cole in oasis soil[J]. Environmental Chemistry, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
Citation: XU Shenghui, NAN Zhongren, WANG Shengli, HU Yahu, WU Wenfei, ZHAO Zhuanjun, WANG Zhaowei. Effects of Cd-Ni combined pollution on the growth and absorption of cole in oasis soil[J]. Environmental Chemistry, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908

绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响

  • 基金项目:

    国家自然科学基金(51178209,41501337)资助.

Effects of Cd-Ni combined pollution on the growth and absorption of cole in oasis soil

  • Fund Project: Supported by the National Natural Science Foundation of China (51178209, 41501337).
  • 摘要: 以干旱区绿洲灰漠土为供试土壤,油菜(Brassica campestris L.)为供试蔬菜,采用盆栽试验及Tessier连续浸提形态分级方法,研究了Cd-Ni复合污染在干旱区绿洲土壤中的形态分布规律及其对油菜的生物有效性.结果表明,当土壤受外源Cd-Ni复合污染后,Cd、Ni的活性随着胁迫浓度的增加而增大.与对照相较,外源Cd-Ni复合胁迫后,Cd的主要赋存形态仍为碳酸盐结合态,而Ni的主要赋存形态由残渣态转化为铁锰氧化物结合态.Cd-Ni复合胁迫对油菜的生长表现为先促后抑;油菜各部位的Cd、Ni含量均随着Cd-Ni复合胁迫水平的升高而增加,Cd主要富集在油菜茎叶中,而Ni则主要富集在油菜根部.富集系数结果表明,油菜各部位Cd的富集系数均大于1,而Ni的富集系数均小于1;迁移系数结果表明,Cd的迁移系数大于Ni,Cd更易从土壤中进入油菜根部,并转运至茎叶,Ni的生物可利用性低于Cd.对油菜吸收Cd最重要的形态为碳酸盐结合态,根系和茎叶吸收Ni最重要的形态分别为有机结合态和可交换态.
  • 加载中
  • [1] TEUTSCH N, EREL Y, HALLCZ L, et al. Distribution of natural and anthropogenic lead in mediterranean soils[J]. Geochimica et Cosmochimica Acta, 2001, 65(17): 2853-2864.
    [2] KLUMPP G, FURLAN C M, DOMINGOS M, et al. Response of stress indicators and growth parameters of tibouchina pulchra cogn. exposed to air and soil pollution near the industrial complex of cubatão, brazil[J]. Science of the Total Environment, 2000, 246(1): 79-91.
    [3] CHEN H, TENG Y, LU S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512:143-153.
    [4] WANG Z W, NAN Z R, ZHAO Z J, et al. Effects of Cadmium, Zinc and Nickel on celery growth and bioaccumulation of heavy metals in contaminated arid oasis soils[J]. Journal of Arid Land Resources and Environment, 2011, 25(2): 138-143.
    [5] BOLAN N S, ADRIANO D C, CURTIN D. Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability[J]. Advances in Agronomy, 2003, 78: 215-272.
    [6] WU F B, ZHANG G P. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors[J]. Journal of Plant Nutrtion, 2002, 25(6): 1163-1173.
    [7] VERMA P, GEORGE K V,SINGH H V, et a1. Modeling cadmium accumulation in radish, carrot, spinachand cabbage[J]. Applied Mathematical Modelling, 2007, 31: 1652-1661.
    [8] JUNG M C, THORNTON I. Heavy metal contamination of soils and plants in the vicinity of alead-zinc mine[J]. Korea Appl Geochem, 1996, 11(1-2): 53-59.
    [9] ROSSELLI W, KELLER C, BOSCHI K. Phytoextraetion capacity of trees growing on metal contaminated soil[J]. Plant and Soil, 2003, 72: 256-265.
    [10] NAN Z R, LI J J, ZHANG J M, et al. Cadmium and Zinc interactions and their transfer in soil-crop system under actual field conditions[J]. Science of the Total Environment, 2002, 285(1-3): 187-195.
    [11] 王丹,魏威,梁东丽,等. 土壤铜、铬(VI)复合污染重金属形态转化及其对生物有效性的影响[J]. 环境科学, 2011, 32(10): 3113-3120.

    WANG D, WEI W, LIANG D L, et al. Transformation of copper and chromium in co-contaminated soil and its influence on bioavailability for pakchoi (Brassica chinensis)[J]. Environmental Science, 2011, 32(10): 3113-3120(in Chinese).

    [12] MAHMOUDI E, ESSIDA N, BEYREM H, et al. Individual and combined effects of lead and zinc on a free-living marine nematode community: Results from microcosm experiments[J]. Journal of Experimental Marine Biology and Ecology, 2007, 343(2): 217-226.
    [13] WU F B, ZHANG G P, YU J S. Interaction of cadmium and four microelement for uptake and translocation in different barley genotypes[J]. Communications in Soil Science and Plant Analysis, 2003, 34(13-14): 2003-2020.
    [14] CHANG X X, ZHAO W Z, ZHANG Z H, et al. Sap flow and tree conductance of shelter-belt in arid region of China[J]. Agricultural and Forest Meteorology, 2006, 138(1-4): 132-141.
    [15] ZHAO Z J, NAN Z R, WANG S L, et al. Experiments on speciation and bioavailability of selected heavy metals in arid oasis soil, northwest of China[J]. Advances in Earth Sciences, 2008, 23(11): 1194-1200.
    [16] NAN Z R, ZHAO C Y. Heavy metal concentrations in gray calcareous soils of Baiyin region, Gansu Province, P. R. China[J]. Water, Air, and Soil Pollution, 2000, 118(1-2): 131-142.
    [17] WANG S L, NAN Z R, LIU X W, et al. Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China[J]. Geoderma, 2009, 152(3-4): 290-295.
    [18] 中华人民共和国环境保护局. GB15618-1995 土壤环境质量标准[S]. 北京: 中国标准出版社, 1995. Ministry of Environmental Protection of China. GB15618-1995 Environmental Quality Standard for Soils[S]. Beijing: China Standards Press, 1995

    (in Chinese).

    [19] 杨仲伟, 朱晓霞, 尤金刚. 张掖绿洲农田土壤重金属污染潜在风险评价[J]. 甘肃农业大学学报, 2015, 50(3): 138-142.

    YANG Z W, ZHU X X, You J G. Evaluation on potential risks of heavy metal pollution in farmland soil in Zhangye oasis[J]. Journal of Gansu Agricultral University, 2015, 50(3): 138-142(in Chinese).

    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 147-211. Lu R K. Analytical Method of Soil Agricultural Chemistry[M]. Beijing: Chinese Agriculture Science and Technology Press, 1999: 147

    -211(in Chinese).

    [21] TESSIER A, CAMPBELL P G C, BISSION M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analalytical Chemistry, 1979, 51(7): 844-850.
    [22] LI Y, ZHU L, WANG C. Adsorption of different chemical forms of Cd in soil by ryegrass[J]. Journal of Agro-Environmental Science, 2003, 22(3): 353-356.
    [23] HAN F X, BANIN A, KINGERY W L. New approach to studies of heavy metal redistribution in soil[J]. Advances in Environmental Research, 2003, 8(1): 113-120.
    [24] 王友保, 张莉, 沈章军, 等. 铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报, 2005, 16(12): 2418-2422.

    WANG Y B, ZHANG L, SHEN Z J, et al. Chemical forms of heavy metals in the soils and plants of copper tailings yard[J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2418-2422(in Chinese).

    [25] SAHQUILLO A, López-Sánchez J F, RUBIL R, et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure[J]. Analytica Chimica Acta, 1999, 382(3): 317-327.
    [26] 李宇庆, 陈玲, 仇雁翎, 等. 上海化学工业区土壤重金属元素形态分析[J]. 生态环境, 2004, 13(2): 154-155.

    LI Y Q, CHEN L, Chou Y L, et al. Speciation of heavy metals in soil from Shanghai Chemical Industry Park[J]. Ecology and Environment, 2004, 13(2): 154-155(in Chinese).

    [27] 朱波, 青长乐, 牟树森, 等. 紫色土外源镉、锌形态的生物有效性[J]. 应用生态学报, 2002, 13(5): 555-558.

    ZHU B, QING C L, MU S S, et al. Bioavailability of exotic zinc and cadmium in purple soil[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 555-558(in Chinese).

    [28] 晋王强, 南忠仁, 刘晓文, 等. 金昌市郊农田土壤Cu、Zn、Ni形态分布特征与生物有效性评价[J]. 环境化学, 2010, 29(2): 220-225.

    JIN W Q, NAN Z R, LIU X W, et al. Speciation and bioavailability assessment of Cu, Zn and Ni in agricultural soils from Jinchang, Gansu, China[J]. Environmental Chemistry, 2010, 29(2): 220-225(in Chinese).

    [29] 武文飞, 南忠仁, 王胜利, 等. 绿洲土 Cd、 Pb、 Zn、 Ni 复合污染下重金属的形态特征和生物有效性[J]. 生态学报, 2013, 33(2): 619-630.

    WU W F, NAN Z R, WANG S L, et al. Fractionation character and bioavailability of Cd, Pb, Zn and Ni combined pollution in oasis soil[J]. Acta Ecologica Sinica, 2013, 33(2): 619-630(in Chinese).

    [30] LIU X, LIU S, TANG Z. The Relationship Between Cd and Pb forms and their availability to rape in major soils of Hebei Province[J]. Acta Ecologica Sinica, 2002, 22(10):1688-1694.
    [31] 刘霞, 刘树庆, 唐兆宏. 河北主要土壤中 Cd、 Pb形态与油菜有效性的关系[J]. 生态学报, 2002, 22(10): 1688-1694.

    LIU X, LIU S Q, TANG Z H. The relationship between Cd and Pb forms and their availability to rape in major soils of Hebei province[J]. Acta Ecologica Sinica, 2002, 22(10): 1688-1694(in Chinese).

    [32] CHEN Y J, TAO S, DENG B S, et al. Effect of root system on metal fractionation in rhizosphere of contaminated soil[J]. Acta Pedologica Sinica, 2001, 38(1): 54-59.
    [33] 强维亚, 陈拓, 汤红官, 等. Cd胁迫和增强UV-B辐射对大豆根系分泌物的影响[J]. 植物生态学报, 2003, 27(3): 289-293.

    QIANG W Y, CHEN T, TANG H G, et al. Effect of Cadmium and enhanced UV-B radiation on soybean root excretion[J]. Acta Phytoecologica Sinica, 2003, 27(3): 289-293(in Chinese).

    [34] 张玲, 王焕校. 镉胁迫下小麦根系分泌物的变化生态学报[J]. 生态学报, 2002, 22(4): 496-502.

    ZHANG L, WANG H X. Changes of root exudates to cadmium stress in wheat (Triticum aestivm L.)[J]. Acta Ecologica Sinica, 2002, 22(4): 496-502(in Chinese).

    [35]
    [36] SAA A L, BBHAG A I, FAHM M A. Pb speciation in the sediments of the heavy polluted western harbor of Alexandr[J]. Water, Air, and Soil Pollution, 2004, 4: 375-384.
    [37] MENCH M J, FARGUES S. Metal uptake by iron-efficient and inefficient oats[J]. Plant and Soil, 1994, 165(2):227-233.
  • 加载中
计量
  • 文章访问数:  1459
  • HTML全文浏览数:  1425
  • PDF下载数:  390
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-29
  • 刊出日期:  2018-05-15
许生辉, 南忠仁, 王胜利, 胡亚虎, 武文飞, 赵转军, 王兆炜. 绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响[J]. 环境化学, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
引用本文: 许生辉, 南忠仁, 王胜利, 胡亚虎, 武文飞, 赵转军, 王兆炜. 绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响[J]. 环境化学, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
XU Shenghui, NAN Zhongren, WANG Shengli, HU Yahu, WU Wenfei, ZHAO Zhuanjun, WANG Zhaowei. Effects of Cd-Ni combined pollution on the growth and absorption of cole in oasis soil[J]. Environmental Chemistry, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908
Citation: XU Shenghui, NAN Zhongren, WANG Shengli, HU Yahu, WU Wenfei, ZHAO Zhuanjun, WANG Zhaowei. Effects of Cd-Ni combined pollution on the growth and absorption of cole in oasis soil[J]. Environmental Chemistry, 2018, 37(5): 1037-1044. doi: 10.7524/j.issn.0254-6108.2017082908

绿洲土壤Cd-Ni复合污染对油菜生长及吸收的影响

  • 1. 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 730000
基金项目:

国家自然科学基金(51178209,41501337)资助.

摘要: 以干旱区绿洲灰漠土为供试土壤,油菜(Brassica campestris L.)为供试蔬菜,采用盆栽试验及Tessier连续浸提形态分级方法,研究了Cd-Ni复合污染在干旱区绿洲土壤中的形态分布规律及其对油菜的生物有效性.结果表明,当土壤受外源Cd-Ni复合污染后,Cd、Ni的活性随着胁迫浓度的增加而增大.与对照相较,外源Cd-Ni复合胁迫后,Cd的主要赋存形态仍为碳酸盐结合态,而Ni的主要赋存形态由残渣态转化为铁锰氧化物结合态.Cd-Ni复合胁迫对油菜的生长表现为先促后抑;油菜各部位的Cd、Ni含量均随着Cd-Ni复合胁迫水平的升高而增加,Cd主要富集在油菜茎叶中,而Ni则主要富集在油菜根部.富集系数结果表明,油菜各部位Cd的富集系数均大于1,而Ni的富集系数均小于1;迁移系数结果表明,Cd的迁移系数大于Ni,Cd更易从土壤中进入油菜根部,并转运至茎叶,Ni的生物可利用性低于Cd.对油菜吸收Cd最重要的形态为碳酸盐结合态,根系和茎叶吸收Ni最重要的形态分别为有机结合态和可交换态.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回