基于环境同位素和水化学特征识别矿井涌水来源
Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry
-
摘要: 隆德煤矿2-2煤层开采受顶板第四系沙层水和基岩裂隙水的威胁.采动影响破坏了地下水的原始水动力场,仅利用地下水动力学方法难以准确确定地下水来源.利用不同含水层水中环境同位素的差异,结合水化学分析可解释13C同位素异常的形成机制、识别隆德矿井涌水来源,为矿井涌水量预测、水害防治提供依据.与侏罗纪基岩裂隙水相比,第四系沙层水常规水化学成分差异不明显,但有高现代碳百分比(pMC)、氘(D)略微富集的特征.分析结果显示,1-1煤层开口疏放水、205采空区积水和203工作面顶板水为第四系沙层水与基岩裂隙水的混合产物,其中,砂层水混入比例分别为27.77%、23.8%和4.21%.表明同位素结合水化学因子分析是正确识别矿井涌水来源、混合比例的有效手段.Abstract: In Longde coal mine, the mining of 2-2 coal seam is faced with the calamity of groundwater inflows induced by quaternary sand aquifer and water-bearing bedrock fissure. Owing to the out-of-balance of virgin groundwater flow field caused by coal mining, it is difficult to determine the origin of mine inflow by groundwater dynamics method alone. Using the differences of environmental isotopes in aquifer groundwater, combined with hydro-chemical analysis, can be identified the formation mechanism of 13C abnormity can be interpreted and the water supplies in Longde colliery. This method can provide the basis for forecasting mine groundwater inflow and preventing and combating groundwater inflows. There was no significant difference in conventional hydro-chemical ions between the sand layer water and that from Jurassic bedrock fissures. Consequently, water samples of the quaternary sand layer were characterized by high percent modern carbon(pMC) and slightly enriched deuterium(D). Water samples from dewatering borehole in 1-1 coal seam,205 gob area and 203 coalface roof were mixed by sand layer water and bedrock fissure water, with the proportion of sand layer water being 27.77%, 23.8% and 4.21%,respectively. It was shown that the combination of hydro-chemical analysis and isotopes was an effective method to identify the source of inflow-water and the mixing ratio.
-
Key words:
- environmental isotope /
- water chemistry /
- factor analysis /
- identifying water source /
- coal mine
-
-
[1] CLARK D I, FRITZ P. Environmental isotopes in hydrogeology[M]. New York:Lewis Publishers, 1997:6-40. [2] CARTWRIGHT I, WEAVER T, CENDÓN D I, et al. Environmental isotopes as indicators of inter-aquifer mixing,Wimmera Region,Murray Basin, Southeast Australia[J]. Chemical Geology, 2010,277(3/4):214-226. [3] CLAUDIO E M, MATTHIAS R, MAURICIO T, et al. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia:A multivariate statistical approach[J]. Science of the Total Environment, 2015, 508:411-426. [4] 蒋万军,赵丹,王广才,等.新疆吐-哈盆地地下水水文地球化学特征及形成作用[J].现代地质,2016, 30(4):825-832. JIANG M J, ZHAO D, WANG A C, et al. Hyrdo-geochemical characteristics and formation of groundwater in Tu-Ha Basin,Xinjiang[J]. Geoscience, 2016, 30(4):825-832(in Chinese).
[5] 卫文学,卢新明,施龙青.矿井出水点多水源判别方法[J].煤炭学报,2015, 35(5):811-814. WEI W X, LU X M, SHI L Q. Identification method of multi}vater source of mine water inrush[J]. Journal of China Coal Society, 2015, 35(5):811-814(in Chinese).
[6] 连会青,刘德民,尹尚先.水化学综合识别模式在矿井水源判别中的应用[J].煤炭工程,2012,1(8):107-113. LIAN H Q, LIU D M, YIN S X. Application of hydrochemistry comprehensive identification mode to distinguish mine water resources mode to distinguish mine water resources[J]. Coal Engineering, 2012,1(8):107-113(in Chinese).
[7] 杜晓军.用环境同位素方法判别矿井出水水源[J].工程勘察,1992,20(2):35-37. DU X J. Using environmental isotopes to identify the water source of the mine[J]. Geotechnical Investigation & Surveying, 1992,20(2):35-37(in Chinese).
[8] 胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010, 32(3):268-271. HU W W, MA Z Y, CAO H D, et al. Application of isotope and hydrogeochemical methods in distinguishing mine bursting water source[J]. Journal of Ear TH Sciences and Environment, 2010, 32(3):268-271(in Chinese).
[9] 钱会,马致远,李培月.水文地球化学(第二版)[M].第6版.北京:地质出版社,2012:45-85. QIAN H, MAZ Y,LI P Y. Hydrogeochemistry(The second edition)[M].Beijing,Geological Publishing House,2012:45 -85(in Chinese).
[10] SALOMONS W, MOOK W G. Isotope geochemistry of carbonates in the weathering zone[M]. Handbook of Environmental Isotope Geochemistry. Amsterdam:Elsevier, 1986:241-269. [11] 姚建明,雷少毅,魏捐鹏,等.神木县隆德矿业有限责任公司隆德煤矿1-1煤层补充勘探报告[R].西安:陕西省煤田地质局185队,2014:26-36. YAO J M, LEI S Y, WEI J P, et al. Supplementary exploration report of 11 [12] HAMZAOUI-AZAZA F, KETATA M, BOUHLILA R, et al. Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia[J]. Environ Monit Assess, 2011, 174(1/4):283-298. [13] CLOUTIER V, LEFEBVRE R, THERRIEN R, et al. Multivariate statistical analysis of Geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer[J]. Journal of Hydrology, 2008,353(3/4):294-313. [14] 包研科.数据分析教程[M].北京:清华大学,2011:68-135. BAO Y K.2011.Data analysis tutorial[M].Beijing:Tsinghua University Press,2011 :68-135(in Chinese).
[15] CVNEYT G D, MCCRAY T E, TURNER A K. Evaluation of graphical and multivariatest for classification of water chemistry data[J]. Hydrogeology Journal, 2002,10(4):455-474. [16] MATTHEW J C, IAN C. Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China[J]. Hydrogeology Journal,2011,19(4):835-850 [17] 李俊霞,苏春利,谢先军,等.多元统计方法在地下水环境研究中的应用-以山西大同盆地为例[J].地质科技情报,2010, 29(6):94-99. LI J X, SU C L, XIE X J, et al. Application of multivariate statistical analysis to research the environment of groundwater:A case study at Datong Basin, Northern China[J]. Geological Science and Technology Information, 2010, 29(6):94-99(in Chinese).
[18] 荣泰生.SPSS与研究方法[M].第2版.大连:东北财经大学出版社,2012:271-286. RONG T S, 2012.SPSS and research methods[M]. Dalian:Dongbei University of Finance &Economics Press:271 -286(in Chinese).
[19] 宋岩,柳少波,洪峰,等.中国煤层气地球化学特征及成因[J].石油学报,2012, 33(1):100-105. SONG Y, LIU S B, HONG F, et al. Geochemical characteristics and genesis of coalbed methane in China[J]. ACTA Petrolei Sinica, 2012, 33(1):100-105(in Chinese).
[20] 陶明信.中国煤层气同位素地球化学初步研究[J].地质学报,2015, 89(增刊1):185-186. TAO M X. Preliminary research on geochemical isotope geochemistry in China[J]. ACTA Geological Sinica, 2015, 89 (Sup1):185-186(in Chinese).
[21] 邓奇根,刘明举,崔学锋,等.准噶尔盆地东南缘煤矿硫化氢气体成因研究[J].地学前缘,2017, 24(5):2-6. DENG J G, LIU M J, CUI X F, et al. A study of hydrogen sulfide genesis in coal mine of southeastern margin of Junggar basin[J]. Earth Scaence Frnntaerc, 2017, 24(5):2-6(in Chinese).
[22] YONG H, WANG G C, CRAVOTTA C A, et al. Hydrogeochemical evolution of ordovician limestone groundwater in Yanzhou, North China[J]. Hydrological Processes, 2013, 27(16):2247-2257. [23] LAURA E T, SAUNDERS J A. Modeling alternative paths of chemical evolution of Na-HCO3- type groundwater near Oak Ridge, Tennessee, USA[J]. Hydrogeology Journal, 1999,7(4):355-364. [24] MOSER H, RAUERT W. Isotopic tracers for obtaining hydrologic parameters//Isotopes in the water cycle past, present and future of a developing science[C]. Netherlands:Springer, 2005:11-14. [25] HERCZEG A L, TORGERSEN T, CHIVAS A R, et al. Geochemistry of ground waters from the Great Artesian Basin, Australia[J]. Journal of Hydrology, 1991,126(3/4):225-245. [26] JGEYH A M. An overview of 14C analysis in the study of groundwater[J]. Radiocarbon, 2000, 42(1):99-114. -

计量
- 文章访问数: 1154
- HTML全文浏览数: 1129
- PDF下载数: 361
- 施引文献: 0