基于环境同位素和水化学特征识别矿井涌水来源

陈建平, 潘光义, 吴丽, 杨海. 基于环境同位素和水化学特征识别矿井涌水来源[J]. 环境化学, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
引用本文: 陈建平, 潘光义, 吴丽, 杨海. 基于环境同位素和水化学特征识别矿井涌水来源[J]. 环境化学, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
CHEN Jianping, PAN Guangyi, WU Li, YANG Hai. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemistry, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
Citation: CHEN Jianping, PAN Guangyi, WU Li, YANG Hai. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemistry, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205

基于环境同位素和水化学特征识别矿井涌水来源

  • 基金项目:

    国家自然科学基金(51404134)资助.

Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry

  • Fund Project: Supported by the National Natural Science Foundation of China (51404134).
  • 摘要: 隆德煤矿2-2煤层开采受顶板第四系沙层水和基岩裂隙水的威胁.采动影响破坏了地下水的原始水动力场,仅利用地下水动力学方法难以准确确定地下水来源.利用不同含水层水中环境同位素的差异,结合水化学分析可解释13C同位素异常的形成机制、识别隆德矿井涌水来源,为矿井涌水量预测、水害防治提供依据.与侏罗纪基岩裂隙水相比,第四系沙层水常规水化学成分差异不明显,但有高现代碳百分比(pMC)、氘(D)略微富集的特征.分析结果显示,1-1煤层开口疏放水、205采空区积水和203工作面顶板水为第四系沙层水与基岩裂隙水的混合产物,其中,砂层水混入比例分别为27.77%、23.8%和4.21%.表明同位素结合水化学因子分析是正确识别矿井涌水来源、混合比例的有效手段.
  • 加载中
  • [1] CLARK D I, FRITZ P. Environmental isotopes in hydrogeology[M]. New York:Lewis Publishers, 1997:6-40.
    [2] CARTWRIGHT I, WEAVER T, CENDÓN D I, et al. Environmental isotopes as indicators of inter-aquifer mixing,Wimmera Region,Murray Basin, Southeast Australia[J]. Chemical Geology, 2010,277(3/4):214-226.
    [3] CLAUDIO E M, MATTHIAS R, MAURICIO T, et al. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia:A multivariate statistical approach[J]. Science of the Total Environment, 2015, 508:411-426.
    [4] 蒋万军,赵丹,王广才,等.新疆吐-哈盆地地下水水文地球化学特征及形成作用[J].现代地质,2016, 30(4):825-832.

    JIANG M J, ZHAO D, WANG A C, et al. Hyrdo-geochemical characteristics and formation of groundwater in Tu-Ha Basin,Xinjiang[J]. Geoscience, 2016, 30(4):825-832(in Chinese).

    [5] 卫文学,卢新明,施龙青.矿井出水点多水源判别方法[J].煤炭学报,2015, 35(5):811-814.

    WEI W X, LU X M, SHI L Q. Identification method of multi}vater source of mine water inrush[J]. Journal of China Coal Society, 2015, 35(5):811-814(in Chinese).

    [6] 连会青,刘德民,尹尚先.水化学综合识别模式在矿井水源判别中的应用[J].煤炭工程,2012,1(8):107-113.

    LIAN H Q, LIU D M, YIN S X. Application of hydrochemistry comprehensive identification mode to distinguish mine water resources mode to distinguish mine water resources[J]. Coal Engineering, 2012,1(8):107-113(in Chinese).

    [7] 杜晓军.用环境同位素方法判别矿井出水水源[J].工程勘察,1992,20(2):35-37.

    DU X J. Using environmental isotopes to identify the water source of the mine[J]. Geotechnical Investigation & Surveying, 1992,20(2):35-37(in Chinese).

    [8] 胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010, 32(3):268-271.

    HU W W, MA Z Y, CAO H D, et al. Application of isotope and hydrogeochemical methods in distinguishing mine bursting water source[J]. Journal of Ear TH Sciences and Environment, 2010, 32(3):268-271(in Chinese).

    [9] 钱会,马致远,李培月.水文地球化学(第二版)[M].第6版.北京:地质出版社,2012:45-85. QIAN H, MAZ Y,LI P Y. Hydrogeochemistry(The second edition)[M].Beijing,Geological Publishing House,2012:45

    -85(in Chinese).

    [10] SALOMONS W, MOOK W G. Isotope geochemistry of carbonates in the weathering zone[M]. Handbook of Environmental Isotope Geochemistry. Amsterdam:Elsevier, 1986:241-269.
    [11] 姚建明,雷少毅,魏捐鹏,等.神木县隆德矿业有限责任公司隆德煤矿1-1煤层补充勘探报告[R].西安:陕西省煤田地质局185队,2014:26-36. YAO J M, LEI S Y, WEI J P, et al. Supplementary exploration report of 11

    coal seam in longde coal mine, longde mining company with limited liability, Shenmu County[R]. Xian, Shanxi Province Coalfield Geological Bureau 185 Group:2014:26-36(in Chinese).

    [12] HAMZAOUI-AZAZA F, KETATA M, BOUHLILA R, et al. Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia[J]. Environ Monit Assess, 2011, 174(1/4):283-298.
    [13] CLOUTIER V, LEFEBVRE R, THERRIEN R, et al. Multivariate statistical analysis of Geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer[J]. Journal of Hydrology, 2008,353(3/4):294-313.
    [14] 包研科.数据分析教程[M].北京:清华大学,2011:68-135. BAO Y K.2011.Data analysis tutorial[M].Beijing:Tsinghua University Press,2011

    :68-135(in Chinese).

    [15] CVNEYT G D, MCCRAY T E, TURNER A K. Evaluation of graphical and multivariatest for classification of water chemistry data[J]. Hydrogeology Journal, 2002,10(4):455-474.
    [16] MATTHEW J C, IAN C. Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China[J]. Hydrogeology Journal,2011,19(4):835-850
    [17] 李俊霞,苏春利,谢先军,等.多元统计方法在地下水环境研究中的应用-以山西大同盆地为例[J].地质科技情报,2010, 29(6):94-99.

    LI J X, SU C L, XIE X J, et al. Application of multivariate statistical analysis to research the environment of groundwater:A case study at Datong Basin, Northern China[J]. Geological Science and Technology Information, 2010, 29(6):94-99(in Chinese).

    [18] 荣泰生.SPSS与研究方法[M].第2版.大连:东北财经大学出版社,2012:271-286. RONG T S, 2012.SPSS and research methods[M]. Dalian:Dongbei University of Finance &Economics Press:271

    -286(in Chinese).

    [19] 宋岩,柳少波,洪峰,等.中国煤层气地球化学特征及成因[J].石油学报,2012, 33(1):100-105.

    SONG Y, LIU S B, HONG F, et al. Geochemical characteristics and genesis of coalbed methane in China[J]. ACTA Petrolei Sinica, 2012, 33(1):100-105(in Chinese).

    [20] 陶明信.中国煤层气同位素地球化学初步研究[J].地质学报,2015, 89(增刊1):185-186. TAO M X. Preliminary research on geochemical isotope geochemistry in China[J]. ACTA Geological Sinica, 2015, 89

    (Sup1):185-186(in Chinese).

    [21] 邓奇根,刘明举,崔学锋,等.准噶尔盆地东南缘煤矿硫化氢气体成因研究[J].地学前缘,2017, 24(5):2-6.

    DENG J G, LIU M J, CUI X F, et al. A study of hydrogen sulfide genesis in coal mine of southeastern margin of Junggar basin[J]. Earth Scaence Frnntaerc, 2017, 24(5):2-6(in Chinese).

    [22] YONG H, WANG G C, CRAVOTTA C A, et al. Hydrogeochemical evolution of ordovician limestone groundwater in Yanzhou, North China[J]. Hydrological Processes, 2013, 27(16):2247-2257.
    [23] LAURA E T, SAUNDERS J A. Modeling alternative paths of chemical evolution of Na-HCO3- type groundwater near Oak Ridge, Tennessee, USA[J]. Hydrogeology Journal, 1999,7(4):355-364.
    [24] MOSER H, RAUERT W. Isotopic tracers for obtaining hydrologic parameters//Isotopes in the water cycle past, present and future of a developing science[C]. Netherlands:Springer, 2005:11-14.
    [25] HERCZEG A L, TORGERSEN T, CHIVAS A R, et al. Geochemistry of ground waters from the Great Artesian Basin, Australia[J]. Journal of Hydrology, 1991,126(3/4):225-245.
    [26] JGEYH A M. An overview of 14C analysis in the study of groundwater[J]. Radiocarbon, 2000, 42(1):99-114.
  • 加载中
计量
  • 文章访问数:  1154
  • HTML全文浏览数:  1129
  • PDF下载数:  361
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-13
  • 刊出日期:  2018-06-15
陈建平, 潘光义, 吴丽, 杨海. 基于环境同位素和水化学特征识别矿井涌水来源[J]. 环境化学, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
引用本文: 陈建平, 潘光义, 吴丽, 杨海. 基于环境同位素和水化学特征识别矿井涌水来源[J]. 环境化学, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
CHEN Jianping, PAN Guangyi, WU Li, YANG Hai. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemistry, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205
Citation: CHEN Jianping, PAN Guangyi, WU Li, YANG Hai. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemistry, 2018, 37(6): 1410-1420. doi: 10.7524/j.issn.0254-6108.2017091205

基于环境同位素和水化学特征识别矿井涌水来源

  • 1. 辽宁工程技术大学, 阜新, 123000
基金项目:

国家自然科学基金(51404134)资助.

摘要: 隆德煤矿2-2煤层开采受顶板第四系沙层水和基岩裂隙水的威胁.采动影响破坏了地下水的原始水动力场,仅利用地下水动力学方法难以准确确定地下水来源.利用不同含水层水中环境同位素的差异,结合水化学分析可解释13C同位素异常的形成机制、识别隆德矿井涌水来源,为矿井涌水量预测、水害防治提供依据.与侏罗纪基岩裂隙水相比,第四系沙层水常规水化学成分差异不明显,但有高现代碳百分比(pMC)、氘(D)略微富集的特征.分析结果显示,1-1煤层开口疏放水、205采空区积水和203工作面顶板水为第四系沙层水与基岩裂隙水的混合产物,其中,砂层水混入比例分别为27.77%、23.8%和4.21%.表明同位素结合水化学因子分析是正确识别矿井涌水来源、混合比例的有效手段.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回