Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能

苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
引用本文: 苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn,Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
Citation: SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn,Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802

Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能

  • 基金项目:

    国家高技术研究发展计划(2016YFB0302901-3)和中央高校基本科研业务费专项资金(JUSRP51723B)资助.

Preparation, characterization and catalytic performance of Fe, Mn,Cu and complex metallic oxides supported on γ-Al2O3

  • Fund Project: Supported by the National High-tech R&D Program of China (2016YFB0302901-3) and the Fundamental Research Funds for the Central University(JUSRP51723B).
  • 摘要: 采用浸渍-煅烧法制备了Fe、Mn、Cu及其复合负载的γ-Al2O3纳米颗粒,采用了SEM-EDS、BET以及XRD等方法对制备得到的MnxOy/γ-Al2O3、CuxOy/γ-Al2O3、FexOy/γ-Al2O3以及FexCuyMnzOw/γ-Al2O3纳米颗粒进行了表征.结果表明,通过浸渍-煅烧法得到的四种纳米颗粒催化剂均可以和双氧水形成非均相类Fenton反应体系,产生大量羟基自由基,从而有效降解PVA大分子,降低废水中的PVA浓度.另外还通过Box-Behnken Design响应面分析法分别确定了MnxOy/γ-Al2O3、CuxOy/γ-Al2O3、FexOy/γ-Al2O3以及FexCuyMnzOw/γ-Al2O3纳米颗粒催化双氧水降解处理PVA的最佳工艺参数.利用GPC和GC-MS分析进一步表征PVA在不同催化剂条件下得到的降解产物后,分析结果表明:Fe、Mn、Cu复合负载的FexCuyMnzOw/γ-Al2O3纳米颗粒催化双氧水降解PVA的催化效果相对较好.当PVA初始反应浓度为1%,反应温度为60℃,催化剂投加量为0.5 g·L-1,双氧水投加量为60 mL·L-1时,PVA的浓度下降率可以达到95%以上,降解产物粘均分子量达到1395,分子量下降率达到99%,降解小分子产物主要包括丁酮、苯甲醛、己醛以及乙酸等不饱和小分子.
  • 加载中
  • [1] MORI Y, HONDA T, LU R,et al. Ultraviolet degradation of poly(vinyl alcohol) used in restoration of historical and cultural properties[J]. Polymer Degradation & Stability, 2015, 114:30-36.
    [2] MOULAY S. Review:Poly(vinyl alcohol) Functionalizations and Applications[J]. Polymer-Plastics Technology and Engineering, 2015, 54(12):1289-1319.
    [3] LI G, ZHU W, CHAI X, et al. Partial oxidation of polyvinyl alcohol using a commercially available DSA anode[J]. Journal of Industrial and Engineering Chemistry, 2015, 31:55-60.
    [4] BEHERA S K, KIM J H, GUO X, et al. Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon[J]. Journal of Hazardous Materials, 2008, 153(3):1207-1214.
    [5] BAJPAI A K, VISHWAKARMA N. Adsorption of poly(vinyl alcohol) onto Fuller's earth surfaces[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2003, 220(1-3):117-130.
    [6] WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2015, 4(1):762-787.
    [7] 宋雅然,魏燕富,刘冬,等. 纳米氧化铝/氧化锰-硅藻土复合物对磷酸根阴离子的吸附[J]. 环境化学,2017,36(10):2265-2273.

    SONG Y R, WEI Y F, LIU D, et al. Adsorption of phosphate anion by nanosized aluminum oxide/manganese oxide-diatomite nanocomposites[J]. Environmental Chemistry, 2017, 36(10):2265-2273(in Chinese).

    [8] FAROOQ M, RAMLI A, NAEEM A, et al. Effect of different metal oxides on the catalytic activity of γ-Al2O3-MgO supported bifunctional heterogeneous catalyst in biodiesel production from WCO[J]. Rsc Advances, 2015, 6(2):872-881.
    [9] 戴越. 改性载体MnOx/γ-Al2O3负载不同金属元素催化剂的制备、表征及性能研究[D]. 南京:南京大学, 2012:6-10. DAI Y. Preparation, characterization and catalytic performance of different metallic oxides supported on MnOx/γ-Al2O3

    [D]. Nanjing:Nanjing University, 2012:6-10(in Chinese).

    [10] DVVEL A, ROMANOVA E, SHARIFI M, et al. Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3. Access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites[J]. Journal of Physical Chemistry C, 2011, 115(46):22770-22780.
    [11] 杨铮铮,黎云祥,廖运文,等. PPt/SiO2 -Al2O3抗硫型柴油车尾气净化氧化催化剂的制备及性能[J]. 环境化学,2016,35(8):1682-1689.

    YANG Z Z, LI Y X, LIAO Y W, et al. Preparation and properties of the Pt/SiO2 -Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environmental Chemistry,2016,35(8):1682-1689(in Chinese).

    [12] 龙丽萍, 赵建国, 杨利娴, 等. 常温下MnO2-Al2O3催化剂催化臭氧氧化甲苯反应[J]. 催化学报, 2011, 32(6):904-916.

    LONG L P, ZHAO J G, YANG L X, et al. Room temperature catalytic ozonation of Toluene over MnO2/Al2O3[J].Chinese Journal of Catalysis, 32(6):2011, 904-916(in Chinese).

    [13] FORUTAN H R, KARIMI E, HAFIZI A, et al. Expert representation chemical looping reforming:A comparative study of Fe, Fe2O3, Co and Cu as oxygen carriers supported on Al2O3[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):900-911.
    [14] WANG P Y, SU S, XIANG J, et al. Catalytic oxidation of Hg, by CuO-MnO2-Fe2O3/γ-Al2O3, catalyst[J]. Chemical Engineering Journal, 2013, 225:68-75.
    [15] ZHANG J J, ZHANG X H, WANG Y F. Degradation of phenol by a heterogeneous photo-Fenton process using Fe/Cu/Al catalysts[J]. RSC Advances, 2016, 6:13168-13176.
    [16] FINLEY J H. Spectrophotometric determination of polyvinyl alcohol in paper coatings[J]. Analytical Chemistry, 1961, 33(13):1925-1927.
    [17] SU Y F, LI Y Y, LI M J, et al. Adsorption and catalytic oxidation of poly(vinyl alcohol) textile by MnxOy/γ-Al2O3 nanoparticle catalyst[J]. Textile Research Journal, 2017(2):004051751772511.
    [18] WANG X B, WU S G, ZOU W X, et al. Fe-Mn/Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2016, 8(37):1314-1323.
    [19] 彭小圣, 林赫, 上官文峰,等. 煅烧温度对钙钛矿复合金属氧化物的结构及其同时催化去除NOx和碳烟的影响[J]. 功能材料, 2006, 37(10):1677-1680.

    PENG X S, LIN H, SAHNGGUAN W F, et al. Effect of calcination temperature on the structure and catalytic properties of perovskite mixed-oxide for simultaneous removal of NOx and soot[J]. Journal of Functional Materials, 2006, 37(10):1677-1680(in Chinese).

    [20] 徐丹,张丽丽,柳丽芬. Cu-Al2O3中骨架铜类芬顿催化去除水中有机污染物[J]. 环境科学, 2017, 38(3):1054-1060.

    XU D, ZHANG L Li, LIU L F. Fenton-like catalytic removal of organic pollutants in water by framework Cu in Cu-Al2O3[J]. Environmental Science, 2017,38(3):1054-1060(in Chinese).

    [21] 张永利, 韦朝海, 史册,等. Cu-Fe-Ru-La/γ-Al2O3湿式氧化催化剂的制备、表征及机理[J]. 人工晶体学报, 2013, 42(7):1457-1469.

    ZHANG Y L, WEI C H, SHI C, et al. Preparation, characterization and mechanism of Cu-Fe-Ru-La/γ-Al2O3 catalysts for wastewater wet oxidation[J]. Journal of Synthetic Crystal, 2013, 42(7):1457-1469(in Chinese).

    [22] 何贞泉,田森林,张秋林,等. 前驱体对Cu/Al2O3的HCN催化水解性能的影响[J]. 环境工程学报, 2016, 9(10):5044-5050.

    HE Z Q, TIAN S L, ZHANG Q L, et al. Influence of precursors on catalytic hydrolysis performance of Cu/Al2O3catalyst toward HCN[J]. Chinese Journal of Environmental Engineering, 2016,9(10):5044-5050(in Chinese).

  • 加载中
计量
  • 文章访问数:  1725
  • HTML全文浏览数:  1688
  • PDF下载数:  157
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-18
  • 刊出日期:  2018-06-15
苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
引用本文: 苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn,Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802
Citation: SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn,Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281. doi: 10.7524/j.issn.0254-6108.2017091802

Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能

  • 1.  江南大学纺织服装学院, 无锡, 214122;
  • 2.  生态纺织教育部重点实验室, 江南大学, 无锡, 214122
基金项目:

国家高技术研究发展计划(2016YFB0302901-3)和中央高校基本科研业务费专项资金(JUSRP51723B)资助.

摘要: 采用浸渍-煅烧法制备了Fe、Mn、Cu及其复合负载的γ-Al2O3纳米颗粒,采用了SEM-EDS、BET以及XRD等方法对制备得到的MnxOy/γ-Al2O3、CuxOy/γ-Al2O3、FexOy/γ-Al2O3以及FexCuyMnzOw/γ-Al2O3纳米颗粒进行了表征.结果表明,通过浸渍-煅烧法得到的四种纳米颗粒催化剂均可以和双氧水形成非均相类Fenton反应体系,产生大量羟基自由基,从而有效降解PVA大分子,降低废水中的PVA浓度.另外还通过Box-Behnken Design响应面分析法分别确定了MnxOy/γ-Al2O3、CuxOy/γ-Al2O3、FexOy/γ-Al2O3以及FexCuyMnzOw/γ-Al2O3纳米颗粒催化双氧水降解处理PVA的最佳工艺参数.利用GPC和GC-MS分析进一步表征PVA在不同催化剂条件下得到的降解产物后,分析结果表明:Fe、Mn、Cu复合负载的FexCuyMnzOw/γ-Al2O3纳米颗粒催化双氧水降解PVA的催化效果相对较好.当PVA初始反应浓度为1%,反应温度为60℃,催化剂投加量为0.5 g·L-1,双氧水投加量为60 mL·L-1时,PVA的浓度下降率可以达到95%以上,降解产物粘均分子量达到1395,分子量下降率达到99%,降解小分子产物主要包括丁酮、苯甲醛、己醛以及乙酸等不饱和小分子.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回