采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制

孙凯, 李雅欣, 李舜尧, 龚睿, 谢道月, 司友斌. 采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制[J]. 环境化学, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
引用本文: 孙凯, 李雅欣, 李舜尧, 龚睿, 谢道月, 司友斌. 采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制[J]. 环境化学, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
SUN Kai, LI Yaxin, LI Shunyao, GONG Rui, XIE Daoyue, SI Youbin. Migration and transformation mechanism of emerging contaminants in the aquatic environments by HRMS coupled with 13C-isotope labeling[J]. Environmental Chemistry, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
Citation: SUN Kai, LI Yaxin, LI Shunyao, GONG Rui, XIE Daoyue, SI Youbin. Migration and transformation mechanism of emerging contaminants in the aquatic environments by HRMS coupled with 13C-isotope labeling[J]. Environmental Chemistry, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905

采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制

  • 基金项目:

    国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104)和安徽农业大学稳定和引进人才科研项目(yj2018-31)资助.

Migration and transformation mechanism of emerging contaminants in the aquatic environments by HRMS coupled with 13C-isotope labeling

  • Fund Project: Supported by the National Natural Science Foundation of China (41471405), the Natural Science Foundation of Anhui Province(1808085QD104) and the Stabilized and introduced talent Foundation of Anhui Agricultural University (yj2018-31).
  • 摘要: 新兴污染物(ECs)释放到水体中能够对野生物种和人群健康构成潜在隐患.天然有机质(NOM)含有羟基、氨基、羧基和醌基等活性官能团,可参与水体中天然酶介导的酶催化氧化腐殖化反应(ECOHRs),并通过自由基耦合机制与ECs形成共价结合产物.该过程不仅降低了ECs的生态毒性,也增加了水体中有机碳、氮储备.然而,如何分析和鉴定ECOHRs中ECs和NOM分子之间形成的共价结合产物已经成为限制研究者阐明ECs在天然水体中迁移和转化机理的瓶颈.本文综述了天然水体中ECs的来源、污染现状、分布特征和生态毒理学效应,明确了ECOHRs对ECs生物有效性和转化行为的影响,重点利用高分辨质谱(HRMS)结合13C-同位素比值技术分析和鉴定了ECs和NOM分子之间形成的共价结合产物.该方法主要通过精确的分子量、同位素标记差值和相对强度比值,从水环境中筛选出ECs和NOM分子之间所有可能存在的共价结合产物,为深入阐明ECs在天然酶介导ECOHRs中的归趋和转化机理提供了理论支持和技术保障.
  • 加载中
  • [1] 王斌, 邓述波, 黄俊, 等. 我国新兴污染物环境风险评价与控制研究进展[J]. 环境化学, 2013, 32(7):1129-1136.

    WANG B, DENG S, HUANG J, et al. Environmental risk assessment and control of emerging contaminants in China[J]. Environmental Chemistry, 2013, 32(7):1129-1136(in Chinese).

    [2] FIELD J A, JOHNSON C A, ROSE J B. What is "emerging"?[J]. Environmental Science & Technology, 2006, 40(23):7105-7105.
    [3] MURRAY K E, THOMAS S M, BODOUR A A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment[J]. Environmental Pollution, 2010, 158(12):3462-3471.
    [4] AERNI H R, KOBLER B, RUTISHAUSER B V, et al. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents[J]. Analytical and Bioanalytical Chemistry, 2004, 378:688-696
    [5] KÄRRMAN A, MUELLER J F, VAN BAVEL B, et al. Levels of 12 perfluorinated chemicals in pooled Australian serum, collected 2002-2003, in relation to age, gender, and region[J]. Environmental Science & Technology, 2006, 40(12):3742-3748.
    [6] LI W, SHI Y, GAO L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315.
    [7] MONTAN O M, GUTLEB A C, MURK A T J. Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife[J]. Environmental Science & Technology, 2013, 47(12):6071-6081.
    [8] SUN K, HUANG Q, GAO Y. Laccase-catalyzed oxidative coupling reaction of triclosan in aqueous solution[J]. Water, Air, & Soil Pollution, 2016, 227(10):358.
    [9] RICHARDSON S D. Water analysis:Emerging contaminants and current issues[J]. Analytical Chemistry, 2009, 81(12):4645-4677.
    [10] FENG Y, COLOSI L M, GAO S, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions:Reaction rates, products, and pathways[J]. Environmental Science & Technology, 2013, 47(2):1001-1008.
    [11] MAO L, LU J, HABTESELASSIE M, et al. Ligninase-mediated removal of natural and synthetic estrogens from water:Ⅱ. Reactions of 17β-estradiol[J]. Environmental Science & Technology, 2010, 44(7):2599-2604.
    [12] BIALK H M, PEDERSEN J A. NMR investigation of enzymaticcoupling of sulfonamide antimicrobials with humic substances[J]. Environmental Science & Technology, 2007, 42(1):106-112.
    [13] SUN K, LUO Q, GAO Y, et al. Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid:Resolved by high-resolution mass spectrometry in combination with 13C labeling[J]. Chemosphere, 2016, 145:394-401.
    [14] 吕小明. 典型新兴环境污染物的研究进展[J]. 中国环境监测, 2012,28(4):118-123.

    LV X M. Research progress of endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs)[J]. Environmental Monitoring in China, 2012,28(4):118-123(in Chinese).

    [15] LIN Y C, YU T H, LIN C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams:Risk to aqueous environments in Taiwan[J]. Chemosphere, 2008, 74(1):131-141.
    [16] PAL A, GIN K Y H, LIN A Y C, et al. Impacts of emerging organic contaminants on freshwater resources:Review of recent occurrences, sources, fate and effects[J]. Science of the Total Environment, 2010, 408(24):6062-6069.
    [17] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211.
    [18] MILLER T R, HEIDLER J, CHILLRUD S N, et al. Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments[J]. Environmental Science & Technology, 2008, 42(12):4570-4576.
    [19] ZHAO J L, YING G G, WANG L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry[J]. Science of the Total Environment, 2009, 407(2):962-974.
    [20] CHEN F, YING G G, KONG L X, et al. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China[J]. Environmental Pollution, 2011, 159(6):1490-1498.
    [21] COLBORN T, VOM SAAL F S, SOTO A M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans[J]. Environmental Health Perspectives, 1993, 101(5):378-384.
    [22] GEE R H, CHARLES A, TAYLOR N, et al. Oestrogenic and androgenic activity of triclosan in breast cancer cells[J]. Journal of Applied Toxicology, 2008, 28(1):78-91.
    [23] KÄRRMAN A, ERICSON I, VAN BAVEL B, et al. Exposure of perfluorinated chemicals through lactation:Levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden[J]. Environmental Health Perspectives, 2007:226-230.
    [24] SINGER H, MVLLER S, TIXIER C, et al. Triclosan:Occurrence and fate of a widely used biocide in the aquatic environment:Field measurements in wastewater treatment plants, surface waters, and lake sediments[J]. Environmental Science & Technology, 2002, 36(23):4998-5004.
    [25] SUN K, HUANG Q, LI S. Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole[J]. Journal of Hazardous Materials, 2017, 331:182-188.
    [26] WOLFF M S, TONIOLO P G. Environmental organochlorine exposure as a potential etiologic factor in breast cancer[J]. Environmental Health Perspectives, 1995, 103(7):141-145.
    [27] CARLSSON C, JOHANSSON A K, ALVAN G, et al. Are pharmaceuticals potent environmental pollutants?:Part I:Environmental risk assessments of selected active pharmaceutical ingredients[J]. Science of the Total Environment, 2006, 364(1-3):67-87.
    [28] KAZETO Y, PLACE A R, TRANT J M. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles[J]. Aquatic Toxicology, 2004, 69(1):25-34.
    [29] KIM Y, CHOI K, JUNG J, et al. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea[J]. Environment International, 2007, 33(3):370-375.
    [30] CLEUVERS M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003, 142(3):185-194.
    [31] LAI H T, HOU J H, SU C I, et al. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui[J]. Ecotoxicology & Environmental Safety, 2008, 72(2):329-334.
    [32] POMATI F, NETTING A G, CALAMARI D, et al. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor[J]. Aquatic Toxicology, 2004, 67(4):387-396.
    [33] RAUT S A, ANGUS R A. Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis[J]. Environmental Toxicology & Chemistry, 2010, 29(6):1287-1291.
    [34] YANG L H, YING G G, SU H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology & Chemistry, 2008, 27(5):1201-1208.
    [35] OLSEN G W, BURRIS J M, EHRESMAN D J, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers[J]. Environmental Health Perspectives, 2007:1298-1305.
    [36] HANSON M L, SMALL J, SIBLEY P K, et al. Microcosm evaluation of the fate, toxicity, and risk to aquatic macrophytes from perfluorooctanoic acid (PFOA)[J]. Archives of Environmental Contamination & Toxicology, 2005, 49(3):307-316.
    [37] ADOLFSSON-ERICI M, PETTERSSON M, PARKKONEN J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden[J]. Chemosphere, 2002, 46(9):1485-1489.
    [38] NAKADA N, SHINOHARA H, MURATA A, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant[J]. Water Research, 2007, 41(19):4373-4382.
    [39] KWON B G, LIM H J, NA S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109:221-225.
    [40] LIN H, NIU J, DING S. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb/MnO2, anodes[J]. Water Research, 2012, 46(7):2281-2289.
    [41] LUCAS M S, PERES J A. Removal of emerging contaminants by fenton and UV-driven advanced oxidation processes[J]. Water Air & Soil Pollution, 2015, 226(8):1-9.
    [42] SECONDES M F N, NADDEO V, BELGIORNO V, et al. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation[J]. Journal of Hazardous Materials, 2014, 264(2):342-349.
    [43] ARANAMI K, READMAN J W. Photolytic degradation of triclosan in freshwater and seawater[J]. Chemosphere, 2007, 66(6):1052-1056.
    [44] WEBER W J, HUANG Q, PINTO R A. Reduction of disinfection byproduct formation by molecular reconfiguration of the fulvic constituents of natural background organic matter[J]. Environmental Science & Technology, 2005, 39(17):6446-6452.
    [45] 陈蕾, 沈超峰, 王郑, 等. 天然有机质对环境污染物的转化过程的介导作用[J]. 生态环境学报, 2013,22(7):1244-1249.

    CHEN L, SHEN C F, WANG Z, et al. Transformation of environmental pollutants mediated by natural organic matter[J]. Ecology and Environmental Sciences, 2013,22(7):1244-1249(in Chinese).

    [46] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrophotometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology & Oceanography, 2001, 46(1):38-48.
    [47] WU F C, TANOUE E. Tryptophan in the sediments of lakes from Southwestern China Plateau[J]. Chemical Geology, 2002, 184(1):139-149.
    [48] 黎文, 吴丰昌, 傅平青, 等. 贵州红枫湖水体溶解有机质的剖面特征和季节变化[J]. 环境科学, 2006, 27(10):1979-1985.

    LI W, WU F C, FU P Q, et al. Profile characteristics and seasonal variation of dissolved organic matter in Hongfeng lake, Guizhou[J]. Environmental Science, 2006, 27(10):1979-1985(in Chinese).

    [49] 王亚军, 马军. 水体环境中天然有机质腐殖酸研究进展[J]. 生态环境学报, 2012, 21(6):1155-1165.

    WANG Y J, MA J. Research advances of humic acid in aquatic environments[J]. Ecology and Environmental Sciences, 2012, 21(6):1155-1165(in Chinese).

    [50] LU J, HUANG Q. Removal of acetaminophen using enzyme-mediated oxidative coupling processes:Ⅱ. Cross-coupling with natural organic matter[J]. Environmental Science & Technology, 2009, 43(18):7068-7073.
    [51] HUANG Q, WEBER W J. Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions:Efficacy, products, and pathways[J]. Environmental Science & Technology, 2005, 39(16):6029-6036.
    [52] KILDUFF J E, MATTARAJ S, SENSIBAUGH J, et al. Modeling flux decline during nanofiltration of NOM with poly (arylsulfone) membranes modified using UV-assisted graft polymerization[J]. Environmental Engineering Science, 2002, 19(6):477-495.
    [53] OHLENBUSCH G, KUMKE M U, FRIMMEL F H. Sorption of phenols to dissolved organic matter investigated by solid phase microextraction[J]. Science of the Total Environment, 2000, 253(1-3):63-74.
    [54] SUN K, LIANG S, KANG F, et al. Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling[J]. Environmental Pollution, 2016, 214:211-218.
    [55] SINGH R, CABRERA M L, RADCLIFFE D E, et al. Laccase mediated transformation of 17β-estradiol in soil[J]. Environmental Pollution, 2015, 197:28-35.
    [56] THORN K A, KENNEDY K R. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose[J]. Environmental Science & Technology, 2002, 36(17):3787-3796.
    [57] LI H, ZHAO H, LIU C, et al. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process:Chain reactions from self-polymerization to cross-coupling oxidation[J]. Chemosphere, 2013, 92(10):1294-1300.
    [58] KERN S, FENNER K, SINGER H P, et al. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry[J]. Environmental Science & Technology, 2009, 43(18):7039-7046.
    [59] SCHYMANSKI E L, SINGER H P, LONGRÉE P, et al. Strategies to characterize polar organic contamination in wastewater:Exploring the capability of high resolution mass spectrometry[J]. Environmental Science & Technology, 2014, 48(3):1811-1818.
    [60] 费晓庆, 沈崇钰, 吴斌, 等. 元素分析-碳同位素比值质谱法在蜂王浆掺假鉴定中的应用[J]. 质谱学报, 2014, 35(2):144-148.

    FEI X Q, SHEN C Y, WU B, et al. Detection of royal jelly adulteration using elemental analyze-carbon isotope ratio mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(2):144-148(in Chinese).

    [61] HICKS R K, DAY D A, JIMENEZ J L, et al. Elemental analysis of complex organic aerosol using isotopic labeling and unit-resolution mass spectrometry[J]. Analytical Chemistry, 2015, 87(5):2741-2747.
    [62] 林必桂, 于云江, 向明灯, 等. 基于气相/液相色谱-高分辨率质谱联用技术的非目标化合物分析方法研究进展[J]. 环境化学, 2016, 35(3):466-476.

    LIN B G, YU Y J, XIANG M D, et al. Advances in non-target analytical methods based on high-resolution mass spectrometry coupled to gas liquid chromatography[J]. Environmental Chemistry, 2016, 35(3):466-476(in Chinese).

    [63] MIRJANKAR N S, FRAGA C G, CARMAN A J, et al. Source attribution of cyanides using anionic impurity profiling, stable isotope ratios, trace elemental analysis and chemometrics[J]. Analytical Chemistry, 2016, 88(3):1827-1834.
    [64] MEISSEN J K, PIRMAN D A, WAN M, et al. Phenotyping hepatocellular metabolism using uniformly labeled carbon-13 molecular probes and LC-HRMS stable isotope tracing[J]. Analytical Biochemistry, 2016, 508:129-137.
    [65] FREY A J, FELDMAN D R, TREFELY S, et al. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and 13C-isotopic labeling of acyl-coenzyme A thioesters[J]. Analytical and Bioanalytical Chemistry, 2016, 408(13):3651-3658.
    [66] NEUMANN N K N, LEHNER S M, KLUGER B, et al. Automated LC-HRMS (/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics[J]. Analytical Chemistry, 2014, 86(15):7320-7327.
  • 加载中
计量
  • 文章访问数:  1382
  • HTML全文浏览数:  1349
  • PDF下载数:  206
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-19
  • 刊出日期:  2018-06-15
孙凯, 李雅欣, 李舜尧, 龚睿, 谢道月, 司友斌. 采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制[J]. 环境化学, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
引用本文: 孙凯, 李雅欣, 李舜尧, 龚睿, 谢道月, 司友斌. 采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制[J]. 环境化学, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
SUN Kai, LI Yaxin, LI Shunyao, GONG Rui, XIE Daoyue, SI Youbin. Migration and transformation mechanism of emerging contaminants in the aquatic environments by HRMS coupled with 13C-isotope labeling[J]. Environmental Chemistry, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905
Citation: SUN Kai, LI Yaxin, LI Shunyao, GONG Rui, XIE Daoyue, SI Youbin. Migration and transformation mechanism of emerging contaminants in the aquatic environments by HRMS coupled with 13C-isotope labeling[J]. Environmental Chemistry, 2018, 37(6): 1223-1231. doi: 10.7524/j.issn.0254-6108.2017091905

采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制

  • 1.  农田生态保育与污染防控安徽省重点实验室, 安徽农业大学资源与环境学院, 合肥, 230036;
  • 2.  南京农业大学资源与环境科学学院, 南京, 210095
基金项目:

国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104)和安徽农业大学稳定和引进人才科研项目(yj2018-31)资助.

摘要: 新兴污染物(ECs)释放到水体中能够对野生物种和人群健康构成潜在隐患.天然有机质(NOM)含有羟基、氨基、羧基和醌基等活性官能团,可参与水体中天然酶介导的酶催化氧化腐殖化反应(ECOHRs),并通过自由基耦合机制与ECs形成共价结合产物.该过程不仅降低了ECs的生态毒性,也增加了水体中有机碳、氮储备.然而,如何分析和鉴定ECOHRs中ECs和NOM分子之间形成的共价结合产物已经成为限制研究者阐明ECs在天然水体中迁移和转化机理的瓶颈.本文综述了天然水体中ECs的来源、污染现状、分布特征和生态毒理学效应,明确了ECOHRs对ECs生物有效性和转化行为的影响,重点利用高分辨质谱(HRMS)结合13C-同位素比值技术分析和鉴定了ECs和NOM分子之间形成的共价结合产物.该方法主要通过精确的分子量、同位素标记差值和相对强度比值,从水环境中筛选出ECs和NOM分子之间所有可能存在的共价结合产物,为深入阐明ECs在天然酶介导ECOHRs中的归趋和转化机理提供了理论支持和技术保障.

English Abstract

参考文献 (66)

返回顶部

目录

/

返回文章
返回