掺S三维石墨烯气凝胶对水中铅离子的电吸附去除

魏永, 赵威, 姚维昊, 江晓栋, 马琦琦. 掺S三维石墨烯气凝胶对水中铅离子的电吸附去除[J]. 环境化学, 2018, 37(10): 2305-2314. doi: 10.7524/j.issn.0254-6108.2017112901
引用本文: 魏永, 赵威, 姚维昊, 江晓栋, 马琦琦. 掺S三维石墨烯气凝胶对水中铅离子的电吸附去除[J]. 环境化学, 2018, 37(10): 2305-2314. doi: 10.7524/j.issn.0254-6108.2017112901
WEI Yong, ZHAO Wei, YAO Weihao, JIANG Xiaodong, MA Qiqi. Removal of lead ion in water by electrosorption with sulfur-doped three-dimensional graphene aerogel[J]. Environmental Chemistry, 2018, 37(10): 2305-2314. doi: 10.7524/j.issn.0254-6108.2017112901
Citation: WEI Yong, ZHAO Wei, YAO Weihao, JIANG Xiaodong, MA Qiqi. Removal of lead ion in water by electrosorption with sulfur-doped three-dimensional graphene aerogel[J]. Environmental Chemistry, 2018, 37(10): 2305-2314. doi: 10.7524/j.issn.0254-6108.2017112901

掺S三维石墨烯气凝胶对水中铅离子的电吸附去除

  • 基金项目:

    江苏省"双创计划"资助项目(苏人才办[2014]27号)和江苏省产学研前瞻项目(BY2014037-18)资助.

Removal of lead ion in water by electrosorption with sulfur-doped three-dimensional graphene aerogel

  • Fund Project: Supported by the "Double Innovate Plan" of Jiangsu province (Personnel office (2014) 27) and the Research Prospective Project of Jiangsu Province (BY2014037-18).
  • 摘要: 利用NaHSO3作为还原剂制备石墨烯气凝胶(graphene aerogels,GAs),利用二硫苏糖醇作为掺杂剂以及还原剂制备掺硫石墨烯气凝胶(Sulfur-doped graphene aerogels,SGAs).通过表征可以看出,与GAs电极材料相比,SGAs电极材料具有更大的比表面积以及孔径分布,更有利于电吸附去除溶液中的Pb2+.对比研究在不同工作电压、进水溶液的浓度以及进水流量三个实验条件下两种材料的电吸附性能,在工作电压为1.2 V时SGAs电极具有最好的去除率为36.29%.当进水流量为15 mL·min-1时SGAs与GAs均具有最高的去除率,分别为37.8%、34.1%.在不同进水浓度下,SGAs的去除率均比GAs电极材料去除率高.两种电极材料在不同进水浓度下均满足进水Pb2+离子的浓度越高,吸附量越高.同时经过10次的吸附/脱附电吸附循环实验可以看出两种材料均具有较好的循环再生性能.
  • 加载中
  • [1] 黄柱坚,朱子骜,吴学深,等. 皇竹草生物炭的结构特征及对重金属吸附作用机制[J]. 环境化学, 2016,35(4):766-772.

    HUANG Z J, ZHU Z A, WU X S, et al. Adsorption of heavy metals by biochar derived from Pennisetum sinese Roxb[J]. Environmental Chemistry, 2016,35(4):766-772(in Chinese).

    [2] 王文琪. 化学法处理电镀废水的研究进展[J]. 电镀与环保, 2017,37(2):1-4.

    WANG W Q. Research progress on treatment of electroplating wastewater by chemical method[J]. Electroplating & Pollution Control, 2017,37(2):1-4(in Chinese).

    [3] 唐虹, 康得军, 谢丹瑜. 活性污泥吸附重金属离子的影响因素[J]. 工业用水与废水, 2015,46(6):1-5.

    TANG H, KANG D J, XIE D Y. Influencing factors of heavy metal ions adsorption by activated sludge[J]. Industrial Water & Wastewater, 2015,46(6):1-5(in Chinese).

    [4] 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展[J]. 水处理技术, 2016,42(5):38-44.

    ZHAO F, YUAN Z H, ZHONG L, et al. Review on electrode materials and capacitive deionization (CDI) technology for desalination[J]. Technology of Water Treatement, 2016,42(5):38-44(in Chinese).

    [5]
    [6] 代凯, 施利毅, 方建慧, 等. 碳纳米管电极电吸附脱盐工艺的研究[J]. 应用科学学报, 2005,23(5):539-544.

    DAI K, SHI L Y, FANG J H, et al. Desalination techniques of carbon nanotube electrodes by electric adsorption[J]. Journal of Applied Sciences, 2005,23(5):539-544(in Chinese).

    [7] 李智, 张玉先. 碳气凝胶电极电吸附除盐工艺研究[J]. 给水排水, 2008,34(5):177-180.

    LI Z, ZHANG Y X. Study on the desalination process of carbon aerogel electrode by electro adsorption[J]. Water & Wastewater Engineering, 2008,34(5):177-180(in Chinese).

    [8] CHUA CK, PUMERA M. Chemical reduction of graphene oxide:A synthetic chemistry viewpoint[J]. Chemical Society Reviews, 2014,43(1):291-312.
    [9] GARCIA DE ABAJO FJ. Graphene plasmonics:challenges and opportunities[J]. Acs Photonics, 2014,1(3):135-152.
    [10] WU Z S, REN W, XU L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. Acs Nano, 2011,5(7):5463-5471.
    [11] KYZAS GZ, DELIYANNI EA, MATIS KA. Graphene oxide and its application as an adsorbent for wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2014,89(2):196-205.
    [12] LV L, SHEN Y, LIU J, et al. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation[J]. Journal of Biomedical Nanotechnology, 2014,10(2):179-193.
    [13] YIN S, ZHANG Y, KONG J, et al. Assembly of graphene sheets into hierarchical structures for high-performance energy storage[J]. Acs Nano, 2011,5(5):3831-3838.
    [14] YANG Z Y, JIN L J, LU G Q, et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance[J]. Advanced Functional Materials, 2014,24(25):3917-3925.
    [15] OU J, YANG L, ZHANG Z, et al. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes[J]. Journal of Power Sources, 2016,333:193-202.
    [16] OZKAZANC H. Novel nanocomposites based on polythiophene and zirconium dioxide[J]. Materials Research Bulletin, 2016,73:226-232.
    [17] SI W, ZHOU J, ZHANG S, et al. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications[J]. Electrochimica Acta, 2013, 107(3):397-405.
    [18] ZHOU Y, LENG Y, ZHOU W, et al. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2015, 16:357-366.
    [19] LI M, LIU C, ZHAO H, et al. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors[J]. Carbon, 2015,86:197-206.
    [20] LV M, LI W, LIU H, et al. Enhancement of the formic acid electrooxidation activity of palladium using graphene/carbon black binary carbon supports[J]. Chinese Journal of Catalysis, 2017,38(5):939-947.
    [21] SAHU V, GROVER S, TULACHAN B, et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon[J]. Electrochimica Acta, 2015,160:244-253.
    [22] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials, 2001,13(10):3169-3183.
    [23] STOLLER MD, PARK S, ZHU Y, et al. Graphene-Based Ultracapacitors[J]. Nano Letters, 2008,8(10):3498-3502.
    [24] HOU CH, HUANG CY, HU CY. Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions[J]. International Journal of Environmental Science and Technology, 2013,10(4):753-760.
    [25] WEI Y, XU L, YANG K, et al. Electrosorption of toxic heavy metal ions by mono S-or N-doped and S, N-codoped 3D graphene aerogels[J]. Journal of The Electrochemical Society, 2017,164(2):17-22.
    [26] YANG Z Y, JIN L J, LU G Q, et al. Response to comment on sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance[J]. Advanced Functional Materials, 2015,25(2):182-183.
    [27] MAZZOTTI M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm[J]. Journal of Chromatography A, 2006,1126(1-2):311-322.
    [28] ALLEN SJ, MCKAY G, PORTER JF. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems[J]. Journal of Colloid and Interface Science, 2004,280(2):322-333.
  • 加载中
计量
  • 文章访问数:  663
  • HTML全文浏览数:  633
  • PDF下载数:  131
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-11-29
  • 刊出日期:  2018-10-15

掺S三维石墨烯气凝胶对水中铅离子的电吸附去除

  • 1. 常州大学环境与安全工程学院, 常州, 213164
基金项目:

江苏省"双创计划"资助项目(苏人才办[2014]27号)和江苏省产学研前瞻项目(BY2014037-18)资助.

摘要: 利用NaHSO3作为还原剂制备石墨烯气凝胶(graphene aerogels,GAs),利用二硫苏糖醇作为掺杂剂以及还原剂制备掺硫石墨烯气凝胶(Sulfur-doped graphene aerogels,SGAs).通过表征可以看出,与GAs电极材料相比,SGAs电极材料具有更大的比表面积以及孔径分布,更有利于电吸附去除溶液中的Pb2+.对比研究在不同工作电压、进水溶液的浓度以及进水流量三个实验条件下两种材料的电吸附性能,在工作电压为1.2 V时SGAs电极具有最好的去除率为36.29%.当进水流量为15 mL·min-1时SGAs与GAs均具有最高的去除率,分别为37.8%、34.1%.在不同进水浓度下,SGAs的去除率均比GAs电极材料去除率高.两种电极材料在不同进水浓度下均满足进水Pb2+离子的浓度越高,吸附量越高.同时经过10次的吸附/脱附电吸附循环实验可以看出两种材料均具有较好的循环再生性能.

English Abstract

参考文献 (28)

目录

/

返回文章
返回