时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)

黄梦璐, 张祯, 吴向阳. 时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)[J]. 环境化学, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
引用本文: 黄梦璐, 张祯, 吴向阳. 时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)[J]. 环境化学, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
HUANG Menglu, ZHANG Zhen, WU Xiangyang. A sensitive time-resolved fluoroimmunoassay for the detertion of tetrabromobisphenol A bis(2-hydroxyetyl) ether in environments[J]. Environmental Chemistry, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
Citation: HUANG Menglu, ZHANG Zhen, WU Xiangyang. A sensitive time-resolved fluoroimmunoassay for the detertion of tetrabromobisphenol A bis(2-hydroxyetyl) ether in environments[J]. Environmental Chemistry, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701

时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)

  • 基金项目:

    国家自然科学基金(21577051)资助.

A sensitive time-resolved fluoroimmunoassay for the detertion of tetrabromobisphenol A bis(2-hydroxyetyl) ether in environments

  • Fund Project: Supported by the National Natural Science Foundation of China(21577051).
  • 摘要: 本研究利用前期制备的四溴双酚A双(2-羟基乙基)醚(TBBPA DHEE)的多克隆抗体,构建了一种高灵敏的时间分辨荧光免疫分析法,用于检测环境中的四溴双酚A衍生物TBBPA DHEE.为提高分析方法的灵敏度,本研究对反应体系中有机溶剂(甲醇)、离子强度及缓冲体系pH等参数进行了优化.在最适条件下,本方法的最低检测限(LOD,基于F/F0=90%)与IC50分别为0.27 ng·mL-1及4.3 ng·mL-1.该方法具有较高的准确度(水样加标回收率为96%-120%;土样及生物加标回收率为75%-90%).利用该方法对江苏省苏州某地区的环境样品进行了调查:在采集的56个样本中,13个样本检出了这种污染物.检出浓度为:水样0.5-2.7 ng·mL-1、土样0.6-1.6 ng·g-1,干重、生物样2.9-4.6 ng·g-1,湿重.本研究为首次针对环境中TBBPA DHEE污染状况的系统性分析.
  • 加载中
  • [1] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants:A review of their analysis, environmental fate and behaviour[J]. Environment International, 2011, 37(2):532-556.
    [2] BALLESTEROS-GÓMEZ A, BALLESTEROS J, ORTIZ X, et al. Identification of novel brominated compounds in flame retarded plastics containing TBBPA by combining isotope pattern and mass defect cluster analysis[J]. Environmental Science & Technology, 2017, 51(3):1518-1526.
    [3] GU S Y, EKPEGHERE K I, KIM H Y, et al. Brominated flame retardants in marine environment focused on aquaculture area:Occurrence, source and bioaccumulation[J]. Science of the Total Environment, 2017, 601:1182-1191.
    [4] ABDALLAH M A E. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363.
    [5] LETCHER R J, CHU S. High-sensitivity method for determination of tetrabromobisphenol-S and Tetrabromobisphenol-A derivative flame retardants in Great Lakes herring gull eggs by liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry[J]. Environmental Science & Technology, 2010, 44(22):8615-8621.
    [6] LIU Q, REN X, LONG Y, et al. The potential neurotoxicity of emerging tetrabromobisphenol A derivatives based on rat pheochromocytoma cells[J]. Chemosphere, 2016, 154:194-203.
    [7] LIU A F, QU G B, YU M, et al. Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea:Implications for trophic transfer[J]. Environmental Science & Technology,2016, 50(8):4203-4211.
    [8] LIU L H, LIU A, ZHANG Q, et al. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry[J]. Journal of Chromatography A, 2017, 1497:81-86.
    [9] TIAN Y, CHEN J, OUYANG Y Z, et al. Reactive extractive electrospray ionization tandem mass spectrometry for sensitive detection of tetrabromobisphenol A derivatives[J]. Analytica Chimica Acta, 2014, 814:49-54.
    [10] TIAN Y, LIU A F, QU G B, et al. Silver ion post-column derivatization electrospray ionization mass spectrometry for determination of tetrabromobisphenol A derivatives in water samples[J]. RSC Advances, 2015,5:17474-17481.
    [11] ZHANG Z, LIU J F, SHAO B, et al. Time-resolved fluoroimmunoassay as an advantageous approach for highly efficient determination of sulfonamides in environmental waters[J]. Environmental Science & Technology, 2010, 44(3):1030-1035.
    [12] ZHANG Z, ZENG K, LIU J F. Immunochemical detection of emerging organic contaminants in environmental waters[J]. Trac-Trends in Analytical Chemistry, 2016, 87:49-57.
    [13] BRUN E M, GARCES-GARCIA M, BANULS M J, et al. Evaluation of a novel malathion immunoassay for groundwater and surface water analysis[J]. Environmental Science & Technology, 2005, 39(8):2786-2794.
    [14] ZHANG Z, LIU J F, FENG T T, et al. Time-Resolved Fluoroimmunoassay as an advantageous analytical method for assessing the total concentration and environmental risk of fluoroquinolones in surface waters[J]. Environmental Science & Technology, 2013, 47(1):454-462.
    [15] ZHANG Z, ZHU N F, HUANG M L, et al. Sensitive immunoassay for simultaneous determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether:An effective and reliable strategy to estimate the typical tetrabromobisphenol A derivative and byproduct in aquatic environments[J]. Environmental Pollution, 2017, 229:431-438.
    [16] BU D, ZHUANG H S, ZHOU X C, et al. Biotin-streptavidin enzyme-linked immunosorbent assay for detecting Tetrabromobisphenol A in electronic waste[J]. Talanta, 2014, 120:40-46.
    [17] XU T, WANG J, LIU S Z, et al. A highly sensitive and selective immunoassay for the detection of tetrabromobisphenol A in soil and sediment[J]. Analytica Chimica Acta, 2012, 751:119-127.
    [18] QU G B, LIU A F, WANG T, et al. Identification of tetrabromobisphenol A allyl ether and tetrabromobisphenol A 2,3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region[J]. Environmental Science & Technology, 2013, 47(9):4760-4767.
    [19] JONSSON S, HORSING M. Investigation of sorption phenomena by solid phase extraction and liquid chromatography for the determination of some ether derivatives of tetrabromobisphenol A[J]. Journal of Physical Organic Chemistry, 2009, 22(11):1120-1126.
    [20] LIANG C, JIN R, GUI W, et al. Enzyme-linked immunosorbent assay based on a monoclonal antibody for the detection of the insecticide triazophos:Assay optimization and application to environmental samples[J]. Environmental Science & Technology, 2007, 41(19):6783-6788.
    [21] TEEMU KORPIMÄKI, VIRVE HAGREN, EEVACHRISTINE BROCKMANN A, et al. Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody[J]. Analytical Chemistry, 2004, 76(11):3091-3098.
    [22] LIU A, SHI J, QU G, et al. Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil[J]. Environmental Science & Technology, 2017, 51(10):5434-5444.
    [23] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce[J]. Environmental Science & Technology, 2010, 44(7):2277-2285.
  • 加载中
计量
  • 文章访问数:  1201
  • HTML全文浏览数:  1155
  • PDF下载数:  157
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-12-27
  • 刊出日期:  2018-10-15
黄梦璐, 张祯, 吴向阳. 时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)[J]. 环境化学, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
引用本文: 黄梦璐, 张祯, 吴向阳. 时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)[J]. 环境化学, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
HUANG Menglu, ZHANG Zhen, WU Xiangyang. A sensitive time-resolved fluoroimmunoassay for the detertion of tetrabromobisphenol A bis(2-hydroxyetyl) ether in environments[J]. Environmental Chemistry, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701
Citation: HUANG Menglu, ZHANG Zhen, WU Xiangyang. A sensitive time-resolved fluoroimmunoassay for the detertion of tetrabromobisphenol A bis(2-hydroxyetyl) ether in environments[J]. Environmental Chemistry, 2018, 37(10): 2124-2130. doi: 10.7524/j.issn.0254-6108.2017122701

时间分辨荧光免疫法检测环境中四溴双酚A衍生物(TBBPA DHEE)

  • 1. 江苏大学环境与安全工程学院, 镇江, 212013
基金项目:

国家自然科学基金(21577051)资助.

摘要: 本研究利用前期制备的四溴双酚A双(2-羟基乙基)醚(TBBPA DHEE)的多克隆抗体,构建了一种高灵敏的时间分辨荧光免疫分析法,用于检测环境中的四溴双酚A衍生物TBBPA DHEE.为提高分析方法的灵敏度,本研究对反应体系中有机溶剂(甲醇)、离子强度及缓冲体系pH等参数进行了优化.在最适条件下,本方法的最低检测限(LOD,基于F/F0=90%)与IC50分别为0.27 ng·mL-1及4.3 ng·mL-1.该方法具有较高的准确度(水样加标回收率为96%-120%;土样及生物加标回收率为75%-90%).利用该方法对江苏省苏州某地区的环境样品进行了调查:在采集的56个样本中,13个样本检出了这种污染物.检出浓度为:水样0.5-2.7 ng·mL-1、土样0.6-1.6 ng·g-1,干重、生物样2.9-4.6 ng·g-1,湿重.本研究为首次针对环境中TBBPA DHEE污染状况的系统性分析.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回