湿地沉积物对铊、镉的吸附性能

邵思婷, 邓红梅, 宋永欣, 朱伟俊, 吴倩雯, 罗梦婷, 陈永亨, 李伟新, 黄雯孝. 湿地沉积物对铊、镉的吸附性能[J]. 环境化学, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
引用本文: 邵思婷, 邓红梅, 宋永欣, 朱伟俊, 吴倩雯, 罗梦婷, 陈永亨, 李伟新, 黄雯孝. 湿地沉积物对铊、镉的吸附性能[J]. 环境化学, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
SHAO Siting, DENG Hongmei, SONG Yongxin, ZHU Weijun, WU Qianwen, LUO Mengting, CHEN Yongheng, LI Weixin, HUANG Wenxiao. Adsorption of thallium and cadmium by wetland sediments[J]. Environmental Chemistry, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
Citation: SHAO Siting, DENG Hongmei, SONG Yongxin, ZHU Weijun, WU Qianwen, LUO Mengting, CHEN Yongheng, LI Weixin, HUANG Wenxiao. Adsorption of thallium and cadmium by wetland sediments[J]. Environmental Chemistry, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701

湿地沉积物对铊、镉的吸附性能

  • 基金项目:

    国家自然科学基金(41170399,41573119),广州市教育局科技计划(1201620157),国土资源部放射性与稀有稀散矿产重点实验室基金(RRSM-KF2018-04)和广州大学大学生创新训练项目(CX2016007)资助.

Adsorption of thallium and cadmium by wetland sediments

  • Fund Project: Supported by the National Fund(41170399, 41573119), the Science and technology plan of Guangzhou Education Bureau(1201620157), Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources (RRSM-KF2018-04)and Innovative Training Program for College Students of Guangzhou University (CX2016007).
  • 摘要: 为了研究广州大学城湾咀头湿地公园(D)和南沙湿地公园(N)表层沉积物对典型重金属铊(Tl)和镉(Cd)吸附性能的研究,采用静态批处理实验,探讨了pH、沉积物中有机质含量、反应时间、Tl(Ⅰ)和Cd(Ⅱ)的初始浓度、温度等因素对吸附的影响.结果表明,溶液初始浓度为10 mg·L-1,随溶液初始pH值的升高,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附量增大,在pH 3.0—9.0时,沉积物D和N对Tl(Ⅰ)均达到较大的吸附量,分别为159.5 mg·kg-1和156.7 mg·kg-1;在pH值为2.0—6.0时,对Cd(Ⅱ)的吸附急剧增大,沉积物D的吸附量达到了220.1 mg·kg-1,沉积物N的值则达到247.8 mg·kg-1,当pH>6.0时,吸附量呈下降趋势;沉积物中的有机质对Cd(Ⅱ)的吸附有显著影响,对Tl(Ⅰ)吸附影响程度小于Cd(Ⅱ).动力学实验显示,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附过程迅速,分别在4 h和1 h达到平衡;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附与准二级动力学拟合程度高(R2>0.99),由此可知该吸附过程为化学吸附.等温吸附实验表明,随Tl(Ⅰ)和Cd(Ⅱ)初始浓度增加,沉积物的吸附量也随之上升,当温度升高时,沉积物对Cd(Ⅱ)的吸附量增大,对Tl(Ⅰ)的吸附效果则相反;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附效果用Langmuir和Freundlich方程拟合均较好.
  • 加载中
  • [1] 邓红梅,陈永亨,刘涛,等.曾冬媚.铊在土壤-植物系统中的迁移积累[J]. 环境化学,2013,32(9):1749-1757.

    DENG H M, CHEN Y H,LIU T, et al. Study on the translocation and accumulation of thallium in soil-plant system[J]. Environmental Chemistry, 2013,32(9):1749-1757(in Chinese).

    [2] 许海涛.一起104例铊中毒事件回顾性调查[J].工业卫生与职业病,2013,39(5):2013,295

    -298. XU H T. A retrospective survey of 104 cases of Tl (I) poisoning[J]. Industrial Health & Occupational Diseases,2013,39(5):295-298(in Chinese).

    [3] 覃政活,黄明英,刘丽萍. 血液灌流联合血液透析治疗急性铊中毒4例分析[J]. 中国职业医学,2013,40(6):529-530.

    QIN Z H,HUANG M Y,LIU L P. Analysis on hemoperfusion combined with hemodialysis in treatment of 4 cases of acute thallium poisoning[J]. Chinese Occupational Medicine, 2013,40(6):529-530(in Chinese).

    [4] 邱泽武. 重视重金属中毒诊断与治疗[J]. 中国实用内科杂志,2014,11(34):1069-1071.

    QIU Z W. Emphasis on diagnosis and treatment of heavy metal poisoning[J]. Chinese Journal of Practical Internal Medicine,2014,11(34):1069-1071. (in Chinese).

    [5] NTIS (National Technical Information Service) USEPA. Ambient water quality criteria for thallium[Z]. EPA 440/5-80-074. U. S. 1980
    [6] 吕文英, 汪玉娟, 李中阳. 北江沉积物中镉的生物可利用性研究[J]. 环境科学与技术, 2011,34(1):56-58.

    LV W Y,WANG Y J,LI Z Y. Bioavailability and potential ecological risk of Cd in sediment of Beijiang River[J]. Environmental Science & Technology, 2011,34(1):56-58(in Chinese).

    [7] XIN P D, LEI F, XIN W M, et al. Concentration level of heavy metals in wheat grains and the health risk assessment to local inhabitants from Baiyun,Gansu,China[J]. Advanced Materials Research, 2012, 518-523:951-956.
    [8] 詹杰,魏树和. 镉中毒的干预措施与机理分析[J]. 生态毒理学报,2012,7(4):354-359.

    ZHAN J,WEI S H. Methods of inhibiting cadmium toxicity and its mechanism:A review[J]. Asian Journal of Ecotoxicology,2012,7(4):354-359(in Chinese).

    [9] 张鼎.镉中毒及锌对镉中毒的作用机理研究[D]. 武汉:华中农业大学,2015. ZHANG D. Cadmium Poisoning and effect of zinc supplement on cadmium cytotoxicity[D]. Wuhan:Huazhong Agricultural University,2015(in Chinese).
    [10] 张紫君,邓红梅,许楠,等. 核壳结构铁纳米线对水中Cd 2+的吸附性能及机理[J]. 环境工程学报,2016,10(7):3529-3537.

    ZHANG Z J,DENG H M,XU N, et al. Adsorption performance and mechanisms of Cd2+ ions from aqueous solution using Fe@Fe2O3 nanowires[J]. Chinese Journal of Environmental Engineering, 2016,10(7):3529-3537(in Chinese).

    [11] MAO L J,MO D W, GUO Y Y, et al. Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, Southern China[J]. Environmental Earth Sciences,2013,69(3):765-771.
    [12] IQBAL J, SHAH M H. Study of seasonal variations and health risk assessment of heavy metals in Cyprinus carpio from Rawal Lake, Pakistan[J].Environmental Monitoring & Assessment,2014,186(4):2025-2037.
    [13] 王春霖,陈永亨,张永波,等. 铊的环境地球化学研究进展[J]. 生态环境学报,2010,19(11):2749-2757.

    WANG C L,CHEN Y H,ZHANG Y B, et al. Overview of research about environment geochemistry characteristics of thallium[J]. Ecology and Environmental Sciences, 2010,19(11):2749-2757(in Chinese).

    [14] 王新, 杨晓芳, 王东升,等. 铊在河流沉积物上的吸附解吸行为研究[J].环境科学学报, 2013, 33(2):535-543.

    WANG X,YANG X F,WANG D S, et al. Adsorption and desorption behavior of thallium in river sediments[J]. Journal of Environmental Sciences, 2013, 33(2):535-543(in Chinese).

    [15] 高博,孙可,任明忠,等. 北江表层沉积物中铊污染的生态风险[J]. 生态环境,2008, 17(2):528-532.

    GAO B,SUN K,REN M Z, et al.Ecological risk assessment of thallium pollution in the surface sediment of Beijing River[J]. Ecology and Environment, 2008, 17(2):528-532(in Chinese).

    [16] 王晨,曾祥英,于志强,等. 湘江衡阳段沉积物中铊等重金属的污染特征及其生态风险评估[J]. 生态毒理学报, 2015, 8(1):16-22.

    WANG C,ZENG X Y, Yu Z Q, et al. Distribution and risk assessment of thallium and other metals in sediments from Hengyang Section of Xiangjiang River[J]. Asian Journal of Ecotoxicology, 2013, 8(1):16-22(in Chinese).

    [17] 马玉,李团结,王迪,等.珠江口滨海湿地沉积物重金属污染现状及潜在生态危害[J]. 热带地理,2011,31(4):353-356.

    MA Y,LI T J,WANG D, et al. Pollution and potential ecological risk of heavy metals in sediment of coastal wetland of the Pearl River estuary[J].Tropical Geography,2011,31(4):353-356(in Chinese).

    [18] 李红玉,赵彦龙,梁永津,等. 北江干流沉积物重金属污染生态风险评价[J]. 广东微量元素科学,2014,21(7):1-5.

    LI H Y,ZHAO Y L,LIANG Y J, et al. Ecological Risk Assessment of heavy metal pollution in the sediment of Beijiang River[J].Guangdong Trace Elements Science,2014,21(7):1-5(in Chinese).

    [19] 赵慧敏,高凌颜,刘敏超.天沙河沉积物中重金属污染特征与生态风险评价[J]. 长江流域资源与环境,2013,22(3):337-342.

    ZHAO H M,GAO L Y, LIU M C. Pollution of heavy metals in the sediments from river and its potential ecological risk assessment[J]. Resources and Environment in the Yangtze Basin,2013,22(3):337-342(in Chinese).

    [20] LUKASZEWSKI Z, KARBOWSKA B, ZEMBRZUSKI W, et al. Thallium in fractions of sediments formed during the 2004 tsunami in Thailand[J]. Environmental Science, 2017,4(38):1442-1450.
    [21] 边博,周燕,张琴. 太湖西岸河网沉积物中重金属污染特征及风险评价[J]. 环境科学,2017, 38(4):1442-1450.

    BIAN B, ZHOU Y, ZHANG Q. Pollution characteristics and risk assessment of heavy metals from river network sediment in western area of Taihu Lake[J]. Environmental Science, 2017, 38(4):1442-1450(in Chinese).

    [22] 彭杰,张杨珠,周清,等.去除有机质对土壤光谱特性的影响[J].土壤, 2006, 38(4):453-458.

    PENG J,ZHANG Y Z,ZHOU Q, et al. Spectral characteristics of soil in Hunan province as affected by removal of soil organic matter[J]. Soils, 2006,38(4):453-458(in Chinese).

    [23] 李江明,黄训东,李远强.用不同方法测定海底沉积物的pH值[J].仪器仪表与分析监测,2005(3):33-40. LI J M,HUANG XD,LI Y Q. Determine pH value of the marine sediment with different methods[J]. Instrumentation Analysis & Monitoring,2005

    (3):33-40(in Chinese).

    [24] 张彦雄,李丹,张佐玉,等.两种土壤阳离子交换量测定方法的比较[J].贵州林业科技,2010,38(2):45-49.

    ZHANG Y X,LI D,ZHANG Z Y,et al. A comparison study of two methods for measuration of soil cation exchange capacity[J].Guizhou Forestry Science and Technology,2010,38(2):45-49(in Chinese).

    [25] 袁大刚,张甘霖. 不同土地利用条件下的城市土壤电导率垂直分布特征[J]. 水土保持学报,2010,24(4):171-176.

    YUAN D G,ZHANG G L. Vertical distribution characteristics of electrical conductivity of urban soil under different land use type[J]. Journal of Soil and Water Conservation,2010,24(4):171-176(in Chinese).

    [26]
    [27] 朱兰保,盛蒂. 火焰原子吸收光谱法测定淮河沉积物中的重金属元素[J]. 光谱实验室,2013,30(3):1412-1414.

    ZHU L B,SHENG D. Determination of heavy metal elements in sediments of Huaihe River by flame atomic absorption spectrometry[J]. Chinese Journal of Spectroscopy Laboratory,2013,30(3):1412-1414(in Chinese).

    [28] 李祥平,张飞,齐剑英,等.pH值对红壤和黄土中铊的吸附-解吸特征的影响[J]. 环境科学与技术,2013,36(9):11-16.

    LI X P,ZHANG F,QI J Y, et al. Effects of pH on adsorption and desorption charateristics of thallium in red soil and loess[J]. Environmental Science & Technology,2013,(9):11-16(in Chinese).

    [29] 童笔峰. 湘江浅水区沉积物对Cd2+、Pb2+的吸附效果研究[D].长沙:湖南大学,2015. TONG B F. Study on adsorption of Cd2+ and Pb2+ by sediments in shallow water of Xiangjiang[D]. Changsha:Hunan University,2015

    (in Chinese).

    [30] 孟妍,伏美燕.去除有机质前后海底沉积物对稀土元素吸附能力的变化研究[J]. 热带海洋学报,2006,25(4):20-24.

    MENG Y,FU M Y. Study on the adsorption ability of rare earth elements to seafloor sediments before and after removal of organic matter[J]. Journal of Tropical Oceanography,2006,25(4):20-24(in Chinese).

    [31] 刘俊峰,祝怡斌,杨晓松,等.影响土壤吸附重金属Cd的因子概述[J].价值工程,2015,34(21):199-202.

    LIU J F,ZHU Y B,YANG X S, et al. Factors affecting the adsorption of heavy metal Cd by soil[J]. Value Engineering,2015, 34(21):199-201(in Chinese).

    [32] 邓红梅,陈永亨.腐殖酸对污染土壤中Tl(Ⅰ)赋存形态的影响[J].环境化学,2010,29(1):35-38.

    DENG H M,CHEN Y H. Effect of humic acid on speciation transformation of thallium in polluted soil[J]. Environmental Chemistry, 2010,29(1):35-38(in Chinese).

    [33] ARIAS M, BARRAL, M T, MEJUTO J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids.[J]. Chemosphere, 2002, 48(10):1081-1088.
    [34] DENG H M,CHEN Y H,WU H H,et al. Adsorption of Tl(Ⅰ) on Na-montmorillonite and kaolinite from aqueous solutions[J].Environmental Earth Sciences,2016,75(9):1-10.
    [35] 焦文涛,蒋新, 余贵芬,等. 土壤有机质对镉在土壤中吸附-解吸行为的影响.[J]. 环境化学,2005,24(5):545-549.

    JIAO W T, JIANG X,YU G F, et al. Effects of organic matter on cadmium adsorption-desorption in three soil[J]. Environmental Chemistry, 2005,24(5):545-549(in Chinese).

    [36] 刘双,卓琼芳,徐振成,等. 河流沉积物对镉和铊的竞争吸附-解吸特性.[J]. 安全与环境学报,2016,16(6):193-199.

    LIU S, ZHUO Q F, XU Z C, et al. On the mechanism of the competitive adsorption and desorption of cadmium and thallium by the river sediments.[J]. Journal of Safety and Environment, 2016,16(6):193-199(in Chinese).

    [37] TUMER A, CABON A, GLEGG G A, et al. Sediment-water interactions of thallium under simulated estuarine conditions[J]. Geochimica et Cosmochimica Acta,2010,74(23):6779-6787.
  • 加载中
计量
  • 文章访问数:  1403
  • HTML全文浏览数:  1384
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-01-06
  • 刊出日期:  2018-07-15
邵思婷, 邓红梅, 宋永欣, 朱伟俊, 吴倩雯, 罗梦婷, 陈永亨, 李伟新, 黄雯孝. 湿地沉积物对铊、镉的吸附性能[J]. 环境化学, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
引用本文: 邵思婷, 邓红梅, 宋永欣, 朱伟俊, 吴倩雯, 罗梦婷, 陈永亨, 李伟新, 黄雯孝. 湿地沉积物对铊、镉的吸附性能[J]. 环境化学, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
SHAO Siting, DENG Hongmei, SONG Yongxin, ZHU Weijun, WU Qianwen, LUO Mengting, CHEN Yongheng, LI Weixin, HUANG Wenxiao. Adsorption of thallium and cadmium by wetland sediments[J]. Environmental Chemistry, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701
Citation: SHAO Siting, DENG Hongmei, SONG Yongxin, ZHU Weijun, WU Qianwen, LUO Mengting, CHEN Yongheng, LI Weixin, HUANG Wenxiao. Adsorption of thallium and cadmium by wetland sediments[J]. Environmental Chemistry, 2018, 37(7): 1534-1544. doi: 10.7524/j.issn.0254-6108.2018010701

湿地沉积物对铊、镉的吸附性能

  • 1.  广州大学, 环境科学与工程学院, 广州, 510006;
  • 2.  广州大学, 珠江三角洲水质安全与保护省部共建重点实验室, 广州, 510006;
  • 3.  国土资源部放射性与稀有稀散矿产重点实验室, 韶关, 512026
基金项目:

国家自然科学基金(41170399,41573119),广州市教育局科技计划(1201620157),国土资源部放射性与稀有稀散矿产重点实验室基金(RRSM-KF2018-04)和广州大学大学生创新训练项目(CX2016007)资助.

摘要: 为了研究广州大学城湾咀头湿地公园(D)和南沙湿地公园(N)表层沉积物对典型重金属铊(Tl)和镉(Cd)吸附性能的研究,采用静态批处理实验,探讨了pH、沉积物中有机质含量、反应时间、Tl(Ⅰ)和Cd(Ⅱ)的初始浓度、温度等因素对吸附的影响.结果表明,溶液初始浓度为10 mg·L-1,随溶液初始pH值的升高,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附量增大,在pH 3.0—9.0时,沉积物D和N对Tl(Ⅰ)均达到较大的吸附量,分别为159.5 mg·kg-1和156.7 mg·kg-1;在pH值为2.0—6.0时,对Cd(Ⅱ)的吸附急剧增大,沉积物D的吸附量达到了220.1 mg·kg-1,沉积物N的值则达到247.8 mg·kg-1,当pH>6.0时,吸附量呈下降趋势;沉积物中的有机质对Cd(Ⅱ)的吸附有显著影响,对Tl(Ⅰ)吸附影响程度小于Cd(Ⅱ).动力学实验显示,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附过程迅速,分别在4 h和1 h达到平衡;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附与准二级动力学拟合程度高(R2>0.99),由此可知该吸附过程为化学吸附.等温吸附实验表明,随Tl(Ⅰ)和Cd(Ⅱ)初始浓度增加,沉积物的吸附量也随之上升,当温度升高时,沉积物对Cd(Ⅱ)的吸附量增大,对Tl(Ⅰ)的吸附效果则相反;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附效果用Langmuir和Freundlich方程拟合均较好.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回