甘氨酸改性TiO2材料的合成及其对染料的吸附性能
Preparation of glycine functionalized TiO2 adsorbent and its adsorption performance for organic dyes
-
摘要: 本文以钛酸异丙酯为钛源,以甘氨酸(gly)为改性材料,通过水解法在比较温和的条件下合成了二氧化钛(TiO2-gly)吸附剂,同时以亚甲基蓝(MB)和酸性红G(ARG)两种染料为处理对象,考察了合成的TiO2的吸附性能,并将之与P25材料进行对比.结果表明,经过甘氨酸改性的TiO2吸附剂的比表面积大幅提升到354.2 m2·g-1;改性TiO2对亚甲基蓝(100 mg·L-1)和酸性红G(100 mg·L-1)两种染料的吸附能力得到较大提高,最大吸附量分别为49.25 mg·g-1和43.98 mg·g-1,远高于P25对二者的吸附容量(分别为28.24 mg·g-1和16.40 mg·g-1);P25的吸附主要受物理吸附作用控制,而改性TiO2吸附剂20 min即可达到吸附平衡,并展现出准二级动力学和Langmuir吸附等温线特性,这表明吸附剂与染料分子之间主要为化学吸附.另外,通过吸附影响因素实验发现通过延长吸附时间、控制pH都能提高该吸附剂的吸附性能,而改性TiO2-gly吸附剂经过5次再生循环实验后仍展现出较好的吸附性能.Abstract: In this work, a TiO2 adsorbent (TiO2-gly) was prepared by the hydrolysis of isopropyl titanate in glycine solution under moderate condition. Then cationic dye methylene blue (MB) and anionic dye Acid Red G (ARG) were used as the targeted contaminants to investigate the adsorption performance of TiO2-gly in comparison with P25. It was found that the specific surface area of the as-prepared TiO2-gly was also increased by glycine modification (354.2 m2·g-1 from 48.5 m2·g-1). The glycine functionalized TiO2 adsorbent also showed greater adsorption capacities (MB 49.25 mg·g-1 and ARG 43.98 mg·g-1) than P25 (MB 28.24 mg·g-1 and ARG16.40 mg·g-1). The data of adsorption isotherm and adsorption kinetics experiments indicute that the adsorption process of the dyes onto TiO2-gly mainly depended on the chemisorption while physisorption was the dominant process onto P25. In addition, the adsorption capacity of TiO2-gly was improved by prolonging the adsorption time and optimizing the pH value of the adsorption system. The modified TiO2 also showed good adsorption regeneration performance.
-
Key words:
- TiO2 /
- adsorption /
- glycine functionalization /
- Acid Red G (ARG) /
- Methylene Blue (MB) /
- dyes
-
-
[1] 张中领,孙晓玲. 染料废水处理技术现状与发展[J]. 化工设计通讯,2017,43(3):205. ZHANG Z L, SUN X L. Present situation and development of dye wastewater treatment technology[J]. Chemical Engineering Design Communications, 2017 ,43(3):205(in Chinese).
[2] 占伟. 脉冲电催化氧化处理染料废水[D]. 武汉:华中科技大学,2013. ZHAN W. Electrocatalytic oxidation of dye wastewater with pulse electrolysis[D]. Wuhan:Huazhong University of Science and Technology, 2013(in Chinese). [3] 沈伟强. 脉冲电催化氧化法处理酸性靛蓝废水的研究[D]. 武汉:华中科技大学,2012. SHEN W Q. Study on treatment of indigo carmine wastewater by electro-catalytic oxidation with pulse[D]. Wuhan:Huazhong University of Science and Technology, 2012(in Chinese). [4] 陆朝阳,沈莉莉,张全兴. 吸附法处理染料废水的工艺及其机理研究进展[J]. 工业水处理,2004,24(3):12-16. LU Z Y, SHEN L L, ZHANG Q X. Research development of technics and mechanism of dye wastewater treatment by adsorption[J]. Industrial Water Treatment, 2004, 24(3):12-16(in Chinese).
[5] ZAWADZKI J. Infrared spectroscopy in surface chemistry of carbons[J]. Chemistry & Physics of Carbon, 1989:147-386. [6] 李晶晶. PPy/TiO2复合吸附剂的制备及其对有机染料的吸脱附性能研究[D]. 西安:西安交通大学,2014. LI J J. Preparation of PPy/TiO2 composite adsorbent and its adsorption and desorption performance for organic dye[D]. Xi'an:Xi'an Jiaotong University, 2014(in Chinese). [7] DUCKWORTH O W. Surface complexation and dissolution of hematite by C 1-C 6, dicarboxylic acids at pH=5.0[J]. Geochimica Et Cosmochimica Acta, 2001, 65(23):4289-4301. [8] FILIUS J D, HIEMSTRA T, VAN RIEMSDIJK W H. Adsorption of small weak organic acids on goethite:Modeling of mechanisms[J]. Journal of Colloid & Interface Science, 1997, 195(2):368-380. [9] JANKOVIĆ I A, ŠAPONJIĆ Z V, ČOMOR M I, et al. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives[J]. Journal of Physical Chemistry C, 2009, 113(29):12645-12652. [10] 吴志坚,刘海宁,张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学,2010,29(6):997-1003. WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry, 2010, 29(6):997-1003(in Chinese).
-

计量
- 文章访问数: 1772
- HTML全文浏览数: 1736
- PDF下载数: 110
- 施引文献: 0