紫外光强化铁离子循环活化PS氧化苯胺

韩东晖, 李瑛, 任秀文, 吴仁人, 李开明, 应光国. 紫外光强化铁离子循环活化PS氧化苯胺[J]. 环境化学, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
引用本文: 韩东晖, 李瑛, 任秀文, 吴仁人, 李开明, 应光国. 紫外光强化铁离子循环活化PS氧化苯胺[J]. 环境化学, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
HAN Donghui, LI Ying, REN Xiuwen, WU Renren, LI Kaiming, YING Guangguo. Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation[J]. Environmental Chemistry, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
Citation: HAN Donghui, LI Ying, REN Xiuwen, WU Renren, LI Kaiming, YING Guangguo. Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation[J]. Environmental Chemistry, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301

紫外光强化铁离子循环活化PS氧化苯胺

  • 基金项目:

    广东省自然科学基金(2016A030310021)和中央级公益性科研院所基本科研业务费专项资金(PM-zx703-201602-058)资助.

Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation

  • Fund Project: Supported by the Natural Science Foundation of Guangdong Province(2016A030310021) and Special Basic Research Fund for Central Public Research Institutes(PM-zx703-201602-058).
  • 摘要: 研究了草酸铁离子(Fe (C2O4)33-)在UV光照条件下的铁离子循环转化过程及其强化过硫酸钠(PS)活化氧化苯胺的机理,考察了Fe (C2O4)33-浓度和初始pH对PS活化及苯胺氧化效果的影响.研究表明,在UV光照条件下,0.75 mmol·L-1的Fe (C2O4)33-溶液在初始pH值为3时,Fe2+的转化率最高可达到96%,远高于柠檬酸铁铵和氯化铁体系,但反应过程中草酸根离子(C2O42-)会发生分解并引起pH升高,导致Fe2+转化率急剧下降;Fe2+循环转化过程对UV/Fe (C2O4)33-体系强化PS活化的作用远大于UV光照直接活化PS过程,对PS活化分解率的贡献达到79%;初始Fe (C2O4)33-浓度决定了Fe2+循环转化的最大浓度并显著影响PS的活化效果,当Fe (C2O4)33-初始浓度从0.25 mmol·L-1逐渐提高到0.50、0.75、1.00 mmol·L-1时,PS活化分解速率不断增大,但当浓度高于0.75 mmol·L-1时,C2O42-对硫酸根自由基(SO4·-)的竞争作用显著增强,导致苯胺的氧化效果出现降低;中碱性条件不利于UV/Fe (C2O4)33-体系发生光化学反应生成Fe2+,但在其活化PS过程中,由于PS分解引起pH下降,在初始pH为7和9时PS仍可被有效活化,PS分解率可分别达到86%和68%.
  • [1] MEDINA R, DAVID GARA P M, FERN NDEZ-GONZ LEZ A J, et al. Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation[J]. Science of the Total Environment, 2018, 618:518-530.
    [2] DEVI P, DAS UDALAI A K. In-situ chemical oxidation:Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571:643-657.
    [3] LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223.
    [4] HUANG K C, COUTTENYE R AHOAG G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)[J]. Chemosphere, 2002, 49(4):413-420.
    [5] YANG S, WANG P, YANG X, et al. Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants:Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1-3):552-558.
    [6] FURMAN O S, TEEL A LWATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16):6423-6428.
    [7] TAN C Q, GAO N Y, CHU W H, et al. Degradation of diuron by persulfate activated with ferrous ion[J]. Separation and Purification Technology, 2012, 95:44-48.
    [8] JIANG X X, WU Y L, WANG P, et al. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion[J]. Environmental Science and Pollution Research, 2013, 20(7):4947-4953.
    [9] ZHU L L, AI Z H, HO W K, et al. Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange[J]. Separation and Purification Technology, 2013, 108:159-165.
    [10] OH S Y, KANG S G, KIM D W, et al. Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides[J]. Chemical Engineering Journal, 2011, 172(2-3):641-646.
    [11] OH S Y, KANG S GCHIU P C. Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron[J]. Science of the Total Environment, 2010, 408(16):3464-3468.
    [12] PU M, GUAN Z, MA Y, et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution[J]. Applied Catalysis A:General, 2018, 549:82-92.
    [13] 张金凤, 杨曦, 郑伟, 等. 水体系中Fe(Ⅱ)/K2S2O8降解敌草隆的研究[J]. 环境化学, 2008, 27(1):15-18.

    ZHANG J F, YANG X, ZHENG W, et al. Degradation of diuron by persulfate oxidation activated by ferrous ion in aqueous solution system[J]. Environmental Chemictry, 2008, 27(1):15-18(in Chinese).

    [14] ZOU J, MA J, CHEN L W, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) Cycle with hydroxylamine[J]. Environmental Science & Technology, 2013, 47(20):11685-11691.
    [15] ZHANG H, WANG Z, LIU C C, et al. Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250:76-82.
    [16] KWAN C YCHU W. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid[J]. Chemosphere, 2007, 67(8):1601-1611.
    [17] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9):1540-1543.
    [18] TAMURA H, GOTO K, YOTSUYANAGI T, et al. Spectrophotometric determination of iron(Ⅱ) with 1,10-phenanthroline in the presence of large amounts of iron(Ⅲ)[J]. Talanta, 1974, 21(4):314-318.
    [19] ZHOU T, LIM T T, WU X H. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands[J]. Water Research, 2011, 45(9):2915-2924.
    [20] ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254:228-235.
    [21] SUN Y F, PIGNATELLO J J. Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV[J]. Environmental Science & Technology, 1993, 27(2):304-310.
    [22] SHIH Y J, SU H T, HUANG Y H. Photoelectro-Fenton mineralization of phenol through optimization of ferrous regeneration[J]. Environmental Science and Pollution Research, 2013, 20(9):6184-6190.
    [23] SHAWAQFEH A T, AL MOMANI F A. Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy[J]. Solar Energy, 2010, 84(7):1157-1165.
    [24] BALMER M E, SULZBERGER B. Atrazine degradation in irradiated iron oxalate systems:Effects of pH and oxalate[J]. Environmental Science & Technology, 1999, 33(14):2418-2424.
    [25] ZUO Y, HOIGNE J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ)-oxalato complexes[J]. Environmental Science & Technology, 1992, 26(5):1014-1022.
    [26] HAN D, WAN J, MA Y, et al. New insights into the role of organic chelating agents in Fe(Ⅱ) activated persulfate processes[J]. Chemical Engineering Journal, 2015, 269:425-433.
    [27] DENG J, SHAO Y, GAO N, et al. Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water[J]. International Journal of Environmental Science and Technology, 2014, 11(4):881-890.
    [28] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(Ⅱ)-activated persulfate process[J]. Journal of Hazardous Materials, 2014, 268:23-32.
    [29] 王婷, 吴乾元, 王文龙, 等. 紫外线/氯高级氧化降解甲基异噻唑啉酮[J]. 环境工程学报, 2017, 11(1):21-26.

    WANG T, WU W Y, WANG W L, et al. Degradation of methylisothiazolinone by UV/chlorine advanced oxidation process[J]. Chinese Journal of Environmental Engineering, 2017, 11(1):21-26(in Chinese).

    [30] ORGE C A, FARIA J L, PEREIRA M F R. Removal of oxalic acid, oxamic acid and aniline by a combined photolysis and ozonation process[J]. Environ Technol, 2015, 36(9):1075-1083.
    [31] KUSIC H, PETERNEL I, UKIC S, et al. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix[J]. Chemical Engineering Journal, 2011, 172(1):109-121.
    [32] LIN C C, WU M S. Degradation of ciprofloxacin by UV/S2O82- process in a large photoreactor[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 285:1-6.
  • 加载中
计量
  • 文章访问数:  1720
  • HTML全文浏览数:  1653
  • PDF下载数:  142
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-03
  • 刊出日期:  2018-10-15
韩东晖, 李瑛, 任秀文, 吴仁人, 李开明, 应光国. 紫外光强化铁离子循环活化PS氧化苯胺[J]. 环境化学, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
引用本文: 韩东晖, 李瑛, 任秀文, 吴仁人, 李开明, 应光国. 紫外光强化铁离子循环活化PS氧化苯胺[J]. 环境化学, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
HAN Donghui, LI Ying, REN Xiuwen, WU Renren, LI Kaiming, YING Guangguo. Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation[J]. Environmental Chemistry, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301
Citation: HAN Donghui, LI Ying, REN Xiuwen, WU Renren, LI Kaiming, YING Guangguo. Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation[J]. Environmental Chemistry, 2018, 37(10): 2247-2256. doi: 10.7524/j.issn.0254-6108.2018030301

紫外光强化铁离子循环活化PS氧化苯胺

  • 1.  环境保护部华南环境科学研究所, 广州, 510655;
  • 2.  中国科学院广州地球化学研究所, 广州, 510640;
  • 3.  广东省水与大气污染防治重点实验室, 广州, 510655;
  • 4.  中国科学院大学, 北京, 100049;
  • 5.  华南师范大学环境研究院, 广州, 510006
基金项目:

广东省自然科学基金(2016A030310021)和中央级公益性科研院所基本科研业务费专项资金(PM-zx703-201602-058)资助.

摘要: 研究了草酸铁离子(Fe (C2O4)33-)在UV光照条件下的铁离子循环转化过程及其强化过硫酸钠(PS)活化氧化苯胺的机理,考察了Fe (C2O4)33-浓度和初始pH对PS活化及苯胺氧化效果的影响.研究表明,在UV光照条件下,0.75 mmol·L-1的Fe (C2O4)33-溶液在初始pH值为3时,Fe2+的转化率最高可达到96%,远高于柠檬酸铁铵和氯化铁体系,但反应过程中草酸根离子(C2O42-)会发生分解并引起pH升高,导致Fe2+转化率急剧下降;Fe2+循环转化过程对UV/Fe (C2O4)33-体系强化PS活化的作用远大于UV光照直接活化PS过程,对PS活化分解率的贡献达到79%;初始Fe (C2O4)33-浓度决定了Fe2+循环转化的最大浓度并显著影响PS的活化效果,当Fe (C2O4)33-初始浓度从0.25 mmol·L-1逐渐提高到0.50、0.75、1.00 mmol·L-1时,PS活化分解速率不断增大,但当浓度高于0.75 mmol·L-1时,C2O42-对硫酸根自由基(SO4·-)的竞争作用显著增强,导致苯胺的氧化效果出现降低;中碱性条件不利于UV/Fe (C2O4)33-体系发生光化学反应生成Fe2+,但在其活化PS过程中,由于PS分解引起pH下降,在初始pH为7和9时PS仍可被有效活化,PS分解率可分别达到86%和68%.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回